Analyse fonctionnelle d’un ballon captif pour thermographie aérienne (1s3 gr 2 équipe 2 )

Le ballon captif est-il l’appareil le plus rentable ainsi que le plus simple pour faire des thermographies aériennes ?

6.2 Analyse du besoin

-La thermographie aérienne sert à réaliser des cartographies thermiques de toitures de bâtiments de grande hauteur.

Thermographie d'une maison

Plus la couleur est sombre, plus c’est froid (pas de déperdition thermiques), plus la couleur est claire, plus c’est chaud (déperdition de chaleur)

Schéma de pourcentage de déperdition de chaleur  sur une maison mal isolée

Schéma de pourcentage de déperdition de chaleur sur une maison mal isolée

Source : www.agglo-carene.fr/1347365191639/0/fiche___actualite/&RH=OPAH

-La thermographie aérienne sert également à réaliser des détections de cavités souterraines, des détections de fuites hydrauliques souterraines importantes, des contrôles de centres d’enfouissement recherche de pollutions sur terre et en mer.

 

Analyse du système

FS1 : Permettre à un opérateur d’effectuer des relevés de thermographie infrarouge sur une station de ski.

FT2 : Transporter, orienter et piloter une caméra thermique infrarouge.

P3300028

Ballon captif blanc, nacelle noire sous le ballon contenant une caméra à thermographie, relié à un treuil par un câble

FT4 : Relever la position géographique.Ballon captif de thermographie (Source : http://www.thermocontrol.fr/02-IMAGES/05-Image-AERIENNE/P3300028.jpg)

Choix du ballon captif

Une solution technique qui a été retenu par le constructeur est l’utilisation du ballon « Gélule 2 » car il permet de transporter une masse totale de 3,7 kg ; cette masse équivaut à la somme des masses de la caméra, des systèmes de fixation qui fait 1,7 kg, il faut y ajouter celle du câble et de la nacelle, qui fait 3,7 kg.

Dimensions, caractéristiques et performances ( en plaine) des différents ballons captifs

(Source : Bac 2013 – Sciences de l’ingénieur )

Afin de réduire son impact environnemental, le système choisi est un ballon sphère car, contrairement au ballon dirigeable, il est peu coûteux et facilement transportable.

Le treuil reste immobile sur le sol, le ballon se dirige selon une trajectoire strictement verticale la caméra suit la direction du ballon et elle sera dirigé a distance,

La tension moyenne est de 12V pour le moteur. La vitesse angulaire à la sortie du moteur est réduit par un réducteur à engrenage et une transmission par poulies crantées. Pendant une montée, une simulation a permis de déterminer 900 joules d’énergie consommée. Le rendement du variateur de vitesse est à peu près égal à 100%. La consommation d’énergie en termes de vitesse est donc négligeable.

Les différent matériaux utilisés sont le carbone, l’aluminium, l’acier inoxydable, fibre de verre.

Evolution possible du ballon captif

Les évolutions possibles pouvant être apportées, sous forme fonctionnelle du système, seraient d’ajouter un moteur sur le ballon qui permettrait de le diriger à distance à l’aide d’une télécommande sans fil, d’augmenter l’autonomie de la caméra.

Comparaison du Ballon captif, à différents moyens de transport

Type

alimen-tation

Coût

Consommation

Niveau sonore

Hauteur de prise de vue

Émission de CO²

Type de mesures

Hélicoptère léger (2/3 places)

pétrole

250 € / h

chère

30 à 40 litre / h

( polluant )

70 dB à 500 m

(bruyant)

Mini 400 m

(grande hauteur)

Oui

Toitures sur grande zone

Hélicoptère mono-turbine (5/6 places)

pétrole

500 € / h

(chère)

100 à 140 litre / h

( polluant )

70 dB à 500 m

 (bruyant)

Mini 400 m

(grande hauteur)

Oui

Toitures sur grande zone

Avion de tourisme

pétrole

110 € / h

(chère)

27 litre / h

( polluant )

70 dB à 500 m

(bruyant)

Mini 400 m

 (grande hauteur)

Oui

Toitures sur grande zone

U.L.M

pétrole

110 € / h

(chère)

27 litre / h

( polluant )

35 dB

à 500 m

(bruyant)

Mini 400 m

(grande hauteur)

Oui

Toitures sur grande zone

Ballon Captif

/

30 € / h

(peu

chère)

0 litre / h

( non polluant )

0 dB à 0M

(pas bruyant)

Max 150m

(petite hauteur)

Non

Toiture, façades et sites difficiles d’accès

 

 

Vue d’un ballon captif pour thermographie aérienne

 

 Contrainte liée au Ballon captif

le ballon captif doit pouvoir résister a des températures très froide, à résister aux vents puissants, il ne doit pas s’envoler et doit être maîtrisé au sol et que le système de retenue soit résistant est maniable.

diagramme pieuvre d'un ballon captif à thermographie aérienne

Diagramme pieuvre d’un ballon captif à thermographie aérienne

 

Station de ski : FS1 : permettre à un opérateur d’effectuer des relevés de thermographie infrarouge sur une station de ski.

Condition météo: FS2 : être utilisable sous certaines conditions météorologiques.

Terrain : FS3 : s’adapter au terrain d’évolution.

Atmosphère : FS4 : être utilisable quelle que soit l’altitude du terrain.

Esthétique : FS5 : être esthétique (aspect des matériaux, formes, couleurs, etc.).

environnement : FS6 : respecter les normes environnementales.

Satellites : FS7 : connaître les coordonnées G.P.S de la prise de vue

Lien vers le sujet de bac de SCIENCES DE L’INGENIEUR

1 réflexion sur « Analyse fonctionnelle d’un ballon captif pour thermographie aérienne (1s3 gr 2 équipe 2 ) »

  1. Des idées très intéressantes, aujourd’hui on n’a pas forcément le don d’innover… mais on peut s’appuyer sur des idées nouvelles, qui ne nous ont peut-être même pas effleuré l’esprit !

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *