Accueil

Mis en avant

Ce blog présente les Sciences de l’Ingénieur au Lycée Pilote Innovant International (LP2I) de Jaunay-Clan, sur le site du Futuroscope près de Poitiers.

Lycée Pilote Innovant International de Jaunay-Clan près de Poitiers (Source : LP2I)

Les principaux objectifs de ce blog sont les suivants :
– Apprendre aux élèves de S SI au LP2I à communiquer en utilisant le vocabulaire et les notions vues en classe, mais aussi en utilisant des outils numériques performants.
– Garder une trace de ce qui a été étudié pour voir les progrès réalisés, aussi bien dans la maîtrise des contenus que dans l’aptitude à les présenter.
– Mutualiser le travail fait par les différentes équipes pour que chaque élève ait une vue d’ensemble du travail réalisé. En effet, les équipes peuvent travailler sur des supports différents avec des problèmes techniques différents.
– Montrer ce qui se fait en Sciences de l’Ingénieur au LP2I dans le but d’informer les élèves qui souhaiteraient rejoindre cette filière au LP2I.
– Echanger avec d’autres professeurs pour mutualiser nos expériences. Internet est une source formidable d’informations. Avec ce blog nous espérons apporter notre contribution à cette richesse.

N’hésitez pas à nous contacter en laissant des commentaires sur ce blog :

Daniel Pers : enseignant en Sciences de l’Ingénieur au LP2I.

CoSpaces : un nouveau logiciel de modélisation et de simulation avec Blockly au collège et au lycée

Lien vers le tutoriel sur CoSpaces, sur lequel je suis en train de travailler :
https://drive.google.com/open?id=0B-rRjoDMbM0iRUZVak5YWjFvVHc

J’ai découvert début février 2017 un nouvel outil numérique très prometteur pour faire avec des élèves de 13 à 18 ans de la modélisation et de la simulation du comportement d’un système : CoSpaces.

Je travaille beaucoup depuis pour analyser le potentiel pédagogique de ce nouvel outil, échanger au niveau international avec des enseignants utilisateurs de CoSpaces, et échanger avec la société Delightex qui développe actuellement ce logiciel pédagogique.
CoSpaces est une application multi plate-forme, actuellement en version beta gratuite. La version éducation devrait être disponible à partir du mois de juin 2017 et sera payante. Je suis d’ores et déjà convaincu que cet outil pourrait satisfaire une grande partie de nos besoins pédagogiques en matière de simulation du comportement d’un système pour des élèves de 13 à 18 ans (au moins) en complément de nos outils actuels.

1) Logiciels de modélisation et de simulation utilisés actuellement

– Pour les fonctions mécaniques, c’est surtout SolidWorks qui est utilisé pour l’enseignement en France (pour des élèves de 11 à 18 ans). Ce logiciel permet de modéliser et simuler des mécanismes complexes : modélisation 3D (avec une qualité professionnelle), cinématique, résistance des matériaux, exportation pour l’impression 3D, …

OnShape (https://www.onshape.com) est une alternative intéressante car gratuite pour l’éducation et plus simple pour la cinématique.

Ces logiciels ne sont pas toujours très simples à utiliser au niveau collège.

BlocksCAD (https://www.blockscad3d.com/editor) permet de modéliser en 3D avec Blockly dès 10 ans : CoSpaces s’en inspire un peu (peut-être encore plus dans les prochaines versions).

– Pour modéliser le comportement de fonctions électroniques comme une carte Arduino associées à des capteurs et des interfaces diverses (interfaces de dialogues, interfaces de communication, interfaces de puissance), nous avons des logiciels basés sur Blockly, devenu le standard actuel, tels que mBlock, Blockly Arduino, … Ces logiciels sont gratuits mais ils ne permettent malheureusement pas la simulation du comportement d’un système (au mieux on peut voir l’évolution temporelle de l’exécution du programme et les entrées/sortie activées).

– Des logiciels comme Scratch, basé aussi sur Blockly, permettent de simuler le comportement d’un système simple. Cela a contribué au succès mondial de Scratch, devenu une référence, mais les possibilités restent très limitées en matière de simulation.
Exemples de simulation d’un portail ou d’un éclairage automatique (formation ac-limoges oct. 2016) : http://pedagogie.ac-limoges.fr/techno/spip.php?article241
Les objectifs correspondaient ici à la programmation, mais on pourrait envisager un travail plus orienté sur la modélisation et la simulation du comportement d’un système.

– Des logiciels comme SinusPhy, FlowCode, ou MatLab permettent de modéliser et simuler le comportement d’un système si on les associent à d’autres logiciels comme Méca 3D. La modélisation et la simulation avec ces outils sont assez complexes avec des approchent très spécifiques. Leur utilisation est difficile même pour des lycéens.

D’autres logiciels plus spécifiques existent comme Algodoo ou énergie 3D, mais ils sont souvent limités à des usages particuliers.

 

2) Modélisation et simulation d’un système avec CoSpaces

CoSpaces ressemble à Scratch dans son principe. Il est utilisable à partir de 10ans. Il devrait permettre de modéliser et simuler le comportement d’un système, que ce soit sa cinématique, sa chaîne d’information, l’interaction avec son environnement, l’interaction avec un utilisateur, … Dans CoSpaces, la modélisation se fait à partir de bibliothèques d’objets 3D, mais on pourra prochainement importer des objets 3D issus d’un modeleur 3D quelconque. La modélisation du comportement des objets 3D (cinématique, interactions, …) se fait avec Blockly intégré à CoSpaces (depuis janvier 2017), comme dans Scratch. La simulation du comportement se fait en 3D temps réel, de manière interactive. Elle est même compatible avec les casques de réalité virtuelle (technologie en plein essor).

Voici la première simulation que j’ai faite en découvrant CoSpaces :

Décollage et atterrissage d’une fusée : https://cospac.es/W8GR

Capture vidéo d’un exemple très simple réalisé avec Blockly sur CoSpaces (source : LP2I)

 

3) Développements actuels de CoSpaces par Delightex

La société Delightex est une startup allemande d’une trentaine de personne. Elle est très intéressée par la collaboration avec les enseignants pour prendre en compte leurs besoins et leurs contraintes. J’échange très régulièrement des informations avec différentes personnes de Delightex, y compris sur les développements en cours :
. Traduction de CoSpaces en français et en chinois avec l’aide des élèves du LP2I (pour une prochaine version).
. Ajout de nouveaux blocs pour Blockly dans CoSpaces (fonctions avec paramètres, possibilité de créer de nouveaux blocs définis par l’utilisateur en JavaScript directement dans Blockly, utilisation de l’audio, …).
. Partages paramétrables et automatisés des modélisations entre l’enseignant et ses élèves.
. Intégration d’un moteur physique (pour gérer la cinématique et les aspects physiques comme dans les jeux vidéos),
. Intégration de blocs compatibles Arduino pour pouvoir expérimenter avec un système réel comme avec Blockly Arduino (Un développeur a été embauché pour ce nouveau projet de Delightex et Sébastien Canet, enseignant-formateur à Nantes, développeur de Blockly Arduino, souhaite collaborer).

Exemples utilisant des fonctionnalités en cours de développement :

. Ellipsographe (Mécanisme constitué de pièces simples, avec 3 axes de rotation et 3 axes en translation) : https://cospac.es/bo3e

. Billard (Cinématique avec collisions, gestion du comportement physique, interactivité et audio) : https://cospac.es/go1w

 

4) Premier test de CoSpaces au LP2I

J’ai testé hier (07/03/2017) pour la première fois CoSpaces avec mes élèves de 1ère SI au LP2I : ils ont très bien accueilli ce nouvel outil pédagogique. Un élève a fait ce commentaire après cette première utilisation hier :
« CoSpaces est un logiciel « sans limite » qui peut permettre aux établissements tels que les collèges et les lycées de réaliser des projets innovants. De par son côté « enfantin », facile, mais aussi grâce à son côté « poussé », il pourrait être une révolution par rapport aux autres logiciels habituellement utilisés en Technologie et en Sciences de l’Ingénieur. De plus, son approche avec Blocky est convaincante, si on est assisté avec un tutoriel et des consignes précises sur des exemples. »

Je leur avais préparé ce tutoriel sur CoSpaces, sur lequel je suis en train de travailler :
https://drive.google.com/open?id=0B-rRjoDMbM0iRUZVak5YWjFvVHc

Je leur avais donné également ce document avec des questions sur quelques exemples simples (document qui ne me satisfait pas beaucoup pour le moment, car je manquais de temps pour préparer cette première utilisation) :

https://drive.google.com/open?id=0B-rRjoDMbM0iVEdfUlgwYXJUM2s

Je suis prêt à collaborer à l’élaboration de séquences pédagogiques niveau lycée ou collège utilisant CoSpaces.

 

Edit 10/07/17

Quelques exemples de modélisations interactives réalisées avec CoSpaces  sont donnée dans ce tutoriel (à mettre à jour) :
https://drive.google.com/open?i

– Show Laser avec des têtes mobiles : https://cospac.es/WwaT

– Robot sur une table (à compléter par l’élève) : https://cospac.es/GkQ5

Version complétée : https://cospac.es/cQMJ

– Wintergatan marble machine (version simplifiée) : https://cospac.es/XdQJ

– LEDs RGB : https://cospac.es/KagO

– Shoot in the ball : https://cospac.es/4c4R

– Interruption de mouvements : https://cospac.es/U1Ht

– Cinématique (8 scènes) : https://cospac.es/dLIp

– Story telling : https://cospac.es/bZTM

– Menu pop-up : https://cospac.es/qyoF

– Sélection et mélange de couleurs : https://cospac.es/naKv

– Test des mouvements de la caméra : https://cospac.es/alpG

– Demo nouvelle interface graphique : https://cospac.es/2r3V

– Lancé de dé : https://cospac.es/CG7E

– Création de fleurs : https://cospac.es/LCSB

————————————————————————————

– Manège : https://cospac.es/O3yj

– Dialogue (à compléter) : https://cospac.es/kLaC

– Attraction du Futuroscope « Danse avec les robots » : https://cospac.es/q3GU

Pour l’école ouverte au Collège Jean Macé, se connecter à CoSpaces Edu :

https://edu.cospaces.io/#Login

avec les noms suivants :

 

 … Eleve12_JM

Travaux réalisés par les élèves le lundi 10 juillet 2017 :

– Joris D. (6e2) Eleve2_JM : https://cospac.es/XX5f
– Oïhana R. (cm2) Eleve4_JM : https://cospac.es/tZRe
– Lenaick P. (6e1) Eleve5_JM : https://cospac.es/iV4t
– Silvan R. (6e1) Eleve6_JM : https://cospac.es/5NIL
– Rémy M. (5e2) Eleve7_JM : https://cospac.es/lJqq

 

Travaux réalisés par les élèves le mardi 11 juillet 2017 :

Travaux réalisés par les élèves le jeudi 13 juillet 2017 :

Edit 04/08/2017

En attendant qu’une autre solution existe, j’ai créé un compte Edu CoSpaces dans lequel je partage mes principaux espaces (avec des doublons que je ne peux pas supprimer).
Pour accéder à ce compte, vous n’avez pas besoin d’avoir un compte CoSpaces. Cliquez simplement sur ce lien:
Https://edu.cospaces.io/#Login
Si vous avez un compte CoSpaces, vous devez d’abord vous déconnecter.
Ensuite, entrez ceci:
Nom d’utilisateur: lp2i_guest
Mot de passe: lp2i2017
Si vous modifiez un espace ou un code, cliquez sur « recommencer ».
Les commentaires sont bienvenus.

 

Edit 22/08/2017

Ecole ouverte au collège Jean Macé de Châtellerault

Exemples d’animations 3D réalisées avec CoSpaces :

– Manège : https://cospac.es/O3yj

– Dialogue (à compléter) : https://cospac.es/kLaC

– Attraction du Futuroscope « Danse avec les robots » : https://cospac.es/q3GU

– Monoroue : https://cospac.es/2K1U

– Hélicoptère : https://cospac.es/PfEJ

– Feu tricolore : https://cospac.es/13YD

– Piano : https://cospac.es/XHS6

– Airbus A350 : https://cospac.es/Wl1A

– Imprimante 3D : https://cospac.es/ratu

– Test d’une nouvelle interface graphique : https://cospac.es/MuwH

– Décollage fusée : https://cospac.es/GDgT

 

Pour pouvoir créer vos propres animations 3D, se connecter à CoSpaces Edu :

https://edu.cospaces.io/#Login

avec les noms suivants :

 

Eleve2_JM …

 

Travaux réalisés par les élèves le jeudi 24 août 2017 :

Daniel Pers, enseignant en Sciences de l’Ingénieur au LP2I

Imprimante 3D Hephestos 2 de BQ : idéale pour le collège et le lycée

Principaux critères de choix pour l’imprimante 3D du FabLab du LP2I

– Simplicité pour le montage, l’utilisation et l’analyse de la machine dans un collège ou un lycée.
La machine sera non capotée pour permettre de visualiser facilement les différents constituants, y compris en fonctionnement (notamment pour les différents mécanismes).
La machine pourra fonctionner sans être reliée à un ordinateur ou à un réseau Wifi.

– Fiabilité (y compris si ce sont des novices qui utilisent la machine).

– Qualité de la documentation fournie qui doit être adaptée à un usage pédagogique.
Une machine libre de droit permet de disposer en plus de toute la documentation technique pour un usage pédagogique, ainsi que du soutien d’une communauté.

– Plutôt low cost mais avec des performances proches des modèles plus haut de gamme (ce qui n’est pas le cas des modèles ultra low cost).
Le prix catalogue (hors promotions) doit donc être inférieur à 1000 € (avec plusieurs distributeurs en France), mais des modèles à 300 € ne conviennent pas à priori.
Les consommables, notamment les bobines de plastique (PLA), doivent être standards pour permettre un approvisionnement simple et économique.

Imprimante 3D retenue pour le FabLab du LP2I

Le FabLab du LP2I a choisi l’Hephestos 2 de BQ vendue en France par de nombreux fournisseurs dont Technologie Services qui est le leader du matériel pour la technologie au collège. Il la propose à 850,08 € TTC (+ 10 € de frais de livraison) : http://www.technologieservices.fr/fr/a-a1000022753-edc1000003/article/HEPHE2-Imprimante-3D-DiY-BQ-Hephestos2.html.

Quelques ressources sur l’imprimante 3D BQ Hephestos 2

– Site du fabricant :

https://www.bq.com/en/hephestos-2

– Tests d’utilisateurs :

. En français (30 nov 2015, soit un an déjà)

http://premium-forum.fr/viewtopic.php?f=43&t=796

. Vidéo en anglais sous-titrée (en anglais) de Thomas Sanladerer du service éducation de BQ en Allemagne (10 min 55) :

https://youtu.be/j5RdIkFj9w0

. Vidéo en anglais sous-titrée de Richard Horne (10 min 43) :

https://youtu.be/V4iOHszCgW0

– Guide de montage de l’Hephestos 2 (dans notre dossier Google Drive) :

https://drive.google.com/open?id=0B-rRjoDMbM0ibElyY2JrOHVZSkE

– Ressources variées en espagnole sur le site du fabricant présentant l’utilisation pédagogique des produites et logiciels de BQ :

http://diwo.bq.com/product/hephestos-2/

Dont ces vidéos très pédagogiques ajoutées le 16 sept 2016 :

. Vidéo 0 (10 min 31) pour le montage :

https://youtu.be/eTRS5jkjfus

. Vidéo 1 (3 min 08) pour la première utilisation, sous-titrée en anglais :

https://youtu.be/R17XL9AaTdM

. Vidéo 2 (4 min 40) sur la mise en oeuvre de l’imprimante par un débutant au quotidien (très intéressant) sous-titrée en français (la transcription en français est même disponible sous forme de texte : BQ tient compte de nos besoins pédagogiques !) :

https://youtu.be/jo0A4WLzoc4

Quelques extraits très intéressants d’un test de l’Hephestos 2 :

Un des liens précédents correspond à un test de l’Hephestos 2 qui est comparée avec une Prusa 3 et d’autres modèles plus haut de gamme.

– « Un montage très simple et rapide, un fonctionnement parfait sans aucun réglage, ce kit robuste est destiné à une clientèle de professionnels et d’associations qui souhaitent mettre cette imprimante en self-service sans avoir à effectuer une formation préalable aux utilisateurs.« 

– « Un montage plus simple, une prise en main immédiate, plus aucun réglage, une extrusion plus fiable pour plus de filaments différents.

Mais aussi des assistants au panneau, moins de bruit, une mise en veille, une mécanique plus fiable et plus stable.« 

–  » … toutes les imprimantes à fusion de fil utilisent le même principe de fonctionnement. Si la différence d’impression … n’est qu’à la marge, il en est de même pour l’Hephestos 2, impossible de savoir quelle imprimante … a produit telle ou telle pièce. Même la vitesse d’impression reste inchangée, quoi qu’en dise les caractéristiques qui ne sont que des chiffres ».

– « Si vous devez choisir une imprimante, attachez-vous aux caractéristiques adaptées à votre usage et payez le juste prix. « 

Ce test date d’il y a un an. BQ a encore apporté des améliorations au firmware depuis.

Dispositif d’essuie-glace d’un Renault Scénic

1 Compte-rendu de l’étude d’un système motorisé d’essuie-glace


1.1.Constitution de l’équipe et choix du système

1.1.1.Equipe

– Quentin D

– Clément C.G

– Chonghan X

– Rémi L


1.1.2.Système choisi

– Dispositif d’Essuie-Glace de la Renault Scenic 2

essuie-glace

système d’essuie-glace d’un Renault scénic



1.2.Analyse du besoin et analyse externe du système

1.2.1.Description du besoin

– Nettoyer le pare-brise de la voiture sous la pluie, afin de fournir au conducteur un champ de vision le plus large et propre possible.


1.2.2.Principales fonctions de service du système et contraintes

– Faire un mouvement d’aller-retour sur le pare-brise en temps de pluie.

– Ne pas encombrer le champ de vision de l’automobiliste

– Ne pas aller trop lentement pour que le pare-brise puisse être dégager rapidement.

– Doit pouvoir résister aux différents intempéries


1.2.3.Description du fonctionnement, vu de l’utilisateur

– Les essuie-glace effectuent un mouvement d’essuyage parallèle. Ils sont équipés des pivots, ce qui élargit leurs rayon d’action. Adaptée aux dimensions du pare-brise, elle permet un champ de vision totalement dégagé.



1.3.Analyse partielle d’une chaîne d’énergie

1.3.1.Description d’une chaîne d’énergie

shema-1

chaîne d’énergie


1.3.2.Analyse de solutions techniques

Mouvement d’aller-retour sur le pare-brise. Le dispositif doit pouvoir nettoyer le champ de vision du conducteur.



1.4.Analyse et modélisation d’une fonction cinématique du système

1.4.1.Choix d’une fonction permettant de transmettre un mouvement

Mécanisme de transmission du mouvement de rotation de l’axe moteur à la barrière articulée


1.4.2.Analyse cinématique

Schéma cinématique :

                

shema-2

 



1.5.Modélisation, simulation et réalisation d’un dispositif expérimental

1.5.1.Conception d’un dispositif expérimentalmotoreducteur

Motoréducteur utilisé pour cette étude (source : banggood.com)

A l’aide d’un moteur montrer ci-dessus, nous allons faire tourner une pièce pour que le reste de l’ensemble du dispositif puisse effectuer des rotations, ce qui entraînera le mouvement souhaité qui est un aller retour du balai


1.5.2.Découverte du logiciel de modélisation 3D Onshape

Modélisations réalisées à partir de larticle sur le blog de la SI au LP2I présentant le logiciel de modélisation 3D Onshape. Notre modélisation expérimentale est disponible sur ce site


1.5.3.Modélisation 3D de votre dispositif expérimental avec Onshape

– Présentation du dispositif expérimental modélisé avec Onshape

. Croquis

1) pièce noir : axe fixe relié au moteur

2) Pièce bleu : pièce fixer au moteur (celle qui entraîne la rotation du dispositif)

3) pièce rouge : transmet le mouvement aux autre piècesmouvement_plan_4_pivots

4) pièce verte : manche du balai d’essuie-glace

. Lien vers la modélisation 3D réalisée avec Onshape

https://cad.onshape.com/documents/581f870b48ac6210957ec951/w/990bd6f206b9420240650ce6/e/9ee8333f5ec6e80220277699


1.5.4.Simulation de la transmission de mouvement avec Onshape

– Simulation de la transmission de mouvement considérée en animant votre modèle 3D avec Onshape.

Pour l’animation, on prend comme point de départ 0° et effectue une révolution, soit comme point d’arrivé 360°

 

– Analyse des résultats de simulation en les comparant notamment avec le fonctionnement souhaité.

Le mouvement obtenu lors de notre expérimentation est équivalent à celui des essuie-glaces sur les voitures standards

– lien vidéo : https://trello-attachments.s3.amazonaws.com/57fbdac9e889e8d9173b3773/57fc8bb468dd6bcc786f6343/2c980e9371d3509204f799e1be833fd2/Essuie_glace_de_Renault_Scenic_2_(600×333).gif


1.5.5.Réalisation du dispositif et validation expérimentale

– Validation expérimentale et qualitative de la modélisation 3D

Nous avons donc réussi a reproduire un dispositif d’essuie-glace d’un Renault Scénic

– Pièces mécaniques imprimées en 3D :

(Disponibles : violet (pastel), rose (magenta), jaune fluo (translucide), blanc.)

Couleur choisie : jaune fluo

            img_20161128_103026 img_20161128_103042

Compte rendu de l’équipe 5 sur l’étude 2; Store banne.

  1. Compte-rendu de l’étude d’un store banne

    1. Constitution de l’équipe et choix du système

      Store terrasse coffre entier motorisé et manuel gris

      1. Equipe
        • Marguerite Anceaume
        • Félix Hiéronimus
        • Oleksiy Stepanishchev
        • Léandre Ripolles
      2. Système choisi
    2. Analyse du besoin et analyse externe du système
      1. Description du besoin
        • Protéger de la pluie et du soleil en créant de l’ombre
      2. Principales fonctions de service du système et contraintes
        • Être silencieux
        • Prendre peu de place lorsqu’il est rangé
        • Se déplier rapidement et de manière autonome
        • Pouvoir être déplié même lors d’une coupure de courant avec un système manuel de secourt
        • Supporter les chocs de la pluie
        • Couvrir le plus de place possible pour protéger la plus grande surface possible
        • Être imperméable
        • S’ouvrir automatiquement et sur une certaine surface quand il y a du soleil
      3. Description du fonctionnement, vu de l’utilisateur
        • Télécommande à distance + interrupteur qui permissent contrôler les mouvements du store :

          Interumpteur imperméable Mural

          Interumpteur imperméable Mural

          Télécomande sans fil

          Télécomande sans fil

           

        • Stopper le store
        • Le faire monter ou le faire descendre (contrôler l’inclinaison)
        • Contrôler le déroulement du storeManivelle démontable pour permettre à l’utilisateur de dérouler le store manuellement lorsqu’il y a une panne énergétiqueVidéos sur le fonctionnement du store terrasse motorisé :

Etude de l’axe 5 ( poignet ) du robot Kuka

Compte-rendu de l’étude du dernier axe du robot kuka

 

Système choisi

–  Robot Kuka KR500-3.

Description du besoin

Il est destiné à mouvoir un ou plusieurs objets ou personnes sur 6 axes différents. Il est utilisé dans les industries pour la fabrication d’objets d’une façon précise et rapide et, aussi dans des attractions pour une utilisation public (La Danse des Robots)

 

Principales fonctions de service du système et contraintes.

  Principales fonctions de services:

– Mouvoir un objet (éventuellement une nacelle prévue pour transporter 2 personnes dans le cas de l’attraction “La Danse des Robots” du Futuroscope) depuis pratiquement n’importe quelle position à quasiment n’importe quelle autre à l’intérieur du rayon d’action du robot (limité tout de même par le poids de l’objet et les hypothétiques obstacles autours de celui-ci).

-Pouvoir programmer les mouvements du robot facilement pour qu’il puisse reproduire des séries d’actions préenregistrées.

-Pouvoir contrôler la célérité des mouvements selon le besoin de l’utilisateur (exemple: Sur une chaîne d’assemblage, selon sa cadence; Pour la Danse des Robots, pour varier les sensations ressenties par l’utilisateur)

-(Essentiellement pour la Danse des Robots ou le travail à la chaîne): Pouvoir synchroniser le robot avec d’autres robots Kuka KR500-3 et les faire travailler de concert.

Contraintes du système:

  • Doit supporter comme poids maximum de 500 à 350 kilogrammes selon l’extension du bras.
  • shéma kuka robotics 1

From kuka-robotics.com

  • Ne doit pas mettre en péril la sécurité de son utilisateur en dehors des risques spécifiés
  • shéma kuka robotics 2

Précautions quand à l’utilisation et à la manipulation du robot Kuka, sous formes de précisions dans la documentation du robot.

Description du fonctionnement, vu de l’utilisateur :

Vu de l’utilisateur, le robot Kuka KR500-3 bouge sur 6 axes différents, selon le programme qu’il suit. Il permet ainsi de déplacer sa tête dans de très nombreuses positions et orientations et ainsi de manipuler des objets (ou la nacelle dans le cas de l’attraction La Danse des Robots) aisément et selon les besoins de son utilisateur.

Analyse partielle d’une chaîne d’énergie

  • Description d’une chaîne d’énergie
analye fonctionel du robot kuka

analye fonctionel du robot kuka

  • Analyse de solutions techniques

Les solutions techniques permettant la transmission de l’énergie mécanique du moteur jusqu’aux axes malgré la place restreinte et les angles dans la structure du robot sont des systèmes de courroies et de poulies.

Analyse et modélisation d’une fonction cinématique du système

  • Choix d’une fonction permettant de transmettre un mouvement

Un moteur électrique actionnant une poulie qui entraîne une courroie dirigée par d’autres poulies jusqu’à entraîner la rotation de l’axe du robot Kuka.

Modélisation, simulation et réalisation d’un dispositif expérimental

Croquis :

croquis fonctionnement robot kuka

Modélisation avec Onshape :

Modélisaion Onshape poignet robot Kuka

 

Modélisation Onshape

Système imprimé avec une imprimante 3D :

poignet robot kuka imprimé

 

Le LP2I crée un FabLab innovant dans sa classe du futur

En cours de rédaction

Le Lycée Pilote Innovant International a inauguré des nouvelles salles dédiées au projet Futur Classroom Lab (FCL) dans le cadre d’un projet européen d’European Schoolnet. Elles sont progressivement équipées de moyens innovants qui permettent dors et déjà de multiples expérimentations pédagogiques pour faire évoluer les pratiques vers les compétences du 21ième siècle. Par exemple, des chaises à roulettes (fournies par notre partenaire DPC) permettent d’imaginer de nouveaux scénarios pédagogiques où les élèves sont plus mobiles, des murs sont transformés en tableaux blancs géants, un système de visioconférence (offert par notre partenaire Polycom) permet de communiquer partout dans le monde. Cette classe du futur correspond à 200 m² équipés et structurés pour enseigner et apprendre autrement.

Un des espaces de cette FCL est dédié au travail créatif. Il est donc logique d’y implanter un FabLab permettant de concevoir et fabriquer des objets. Sa création est menée par une douzaine d’élèves dans le cadre d’Activités Complémentaires de Formation, encadrée par un enseignant en Sciences de l’Ingénieur. Mais le FabLab du LP2I s’adresse à tous les élèves et tout le personnel du LP2I. Tout le matériel nécessaire est mis à disposition, aussi bien les outils que les composants. Les solutions numériques modernes sont privilégiées : modélisation 3D, impression 3D, programmation de cartes électroniques de type Arduino, …

Le FabLab du LP2I ouvre ses portes une fois par semaine. Des débutants et des personnes plus expérimentées peuvent se rencontrer et faire vivre l’esprit des Makers, du Do It Yourself. C’est un nouvel espace propice à la découverte et à la création collaborative. Il peut aider les élèves à construire leur projet d’orientation dès la seconde.

Une des particularités de ce FabLab est de chercher des solutions techniques et pédagogiques facilement transférables dans la plupart des établissements scolaires, en France ou à l’étranger, en tenant compte de leurs contraintes financières, de leurs besoins pédagogiques, … L’imprimante 3D choisie est un modèle performant mais adapté aux débutants, livrée en kit pour 930 €. Les composants pour les projets sont standards et bon marché. Les logiciels utilisés sont gratuits, ouverts, et libres si possible : Onshape pour la modélisation 3D, Blockly Arduino pour la programmation, …

Un premier projet vient de commencer : concevoir et fabriquer des drones autonomes, à vocation pédagogique, et low cost. Un collège est déjà intéressé par ce projet, ainsi que deux FabLabs de Côte d’Ivoire.

Le Parc du Futuroscope est intéressé aussi pour renouveler son offre pédagogique en partenariat avec le FabLab du LP2I.

Analyse fonctionnelle de la machie à pain

1 Système choisi : Machine à pain

20160919_105155

2 Analyse du besoin

2.1 Fonction globale

Cette machine est prévu pour faire pain, des gâteaux, de la confiture, de la patte à pain de manière autonome.

2.2 Fonctions de service et contrainte

-être simple d’emplois.

-répondre au programme demander.

-être autonome.

-résister à l’environnement.

-être esthétique.

-s’adapter au secteur d’alimentation en électricité.

3 Analyse du système

graphique

3.1 Fonctionnement, vu de l’utilisateur

Cette machine est équipé de 6 boutons poussoirs qui permettent à l’utilisateur de choisir les mode de cuisson. Il y a deux boutons pour gérer le minuteur de la machine, un bouton pour sélectionner les menu, un bouton pour faire brunir le pain, un bouton pour la gestion du poids et un bouton pour commencer a cuisson.

3.2 Matière d’œuvre et valeur ajoutée

La machine à pain transforme les ingrédients que nous lui avons ajoutée pour la transformer en pâte à pain qu’il cuis ensuite.

3.3 Flux

Seul le déplacement autonome du robot avec détection des obstacles et du vide est pris en compte dans ce schéma fonctionnel.

capture

– Sur ce schéma fonctionnel on représente des flux d’informations (en vert ici) et des flux d’énergie (en rouge ici).

4 Quelques fonctions techniques et solutions techniques

4.1

20160916_113938

Interface de dialogue- Fonction technique : Dialoguer avec l’utilisateur

– Solution technique : des boutons poussoirs, et des Leds permettent l’acquisition d’informations sur des choix de l’utilisateur (mode de fonctionnement) et d’informer l’utilisateur.

4.2 Alimentation

– Fonction technique : Alimenter en énergie électrique de manière constante

5 Impact environnemental

– La machine à pain utilise l’électricité que le temps de son utilisation

– La machine à pain est bruyante.

– La machine à pain utilise des matériaux électroniques

Evolution possible pour réduire sont impact :

– Réduction du bruit.

– Matériaux recyclable

Analyse fonctionnelle du vidéoprojecteur EMP-61

Système choisi : Vidéoprojecteur Epson EMP-61

Vidéoprojecteur vu de devant (source : LP2I)

Vidéoprojecteur vu de devant (source : LP2I)

 

 

 

 

 

 

Vidéoprojecteur vu de derrière (Source : LP2I)

Vidéoprojecteur vu de derrière (Source : LP2I)

videoprojecteur-haut

vidéoprojecteur vu de haut (source : LP2I)

 

 

 

 

 

 

 

Ce vidéo projecteur est prévu pour faire grandir les images sur l’ordinateur et les projeter sur un écran plus grand.

Diagramme "bête à cornes" (Source : LP2I)

Diagramme « bête à cornes » (Source : LP2I)

Il possède plusieurs fonctions qui sont de :

  • Ne pas être très grand pour mettre sur table ou suspendre au plafond.

  • Pouvoir être commandé à distance.

  • Pouvoir changer la luminosité.

  • Pouvoir changer la distance focale.

  • Baisser vite la température

  • Ne pas être très bruyant.

  • Être simple d’emploi.

  • Avoir une grande qualité d’image

Diagramme pieuvre (Source : LP2I)

Diagramme pieuvre (Source : LP2I)

Repère

Liste des fonctions de service

Type de fonction

FS1

Projeter les images reçues

principale

FS2

Être relié à un ordinateur ou une tablette

principale

FS3

Être alimenté sur secteur

contrainte

FS4

Rester à l’intérieur

contrainte

 

Le vidéoprojecteur possède 10 boutons poussoirs (alimentation, menu, source, volume haut/bas, pencher l’image vers le haut/vers le bas , échap, valider, aide).
Il possède également 13 connexions (trois RGB, RCA, deux HDMI, alimentation, quatre audio, vidéo, S-Vidéo).

Le vidéoprojecteur possède aussi une lampe (réglable par des objectifs)et des LEDs (température, lampe, statut).

Le vidéoprojecteur agit sur les images et sur la surface où il projette l’image. Lorsqu’il est allumé, on peut voir une image qui est sur un ordinateur mais pour un plus grand public.

Sur ce schéma fonctionnel, on a représenté des flux d’informations (flèches bleues) et des flux d’énergie (flèches rouges).

Sur ce schéma fonctionnel, on a représenté des flux d’informations (flèches bleues) et des flux d’énergie (flèches rouges). (Source : LP2I)

 

Quelques fonctions techniques et solutions techniques

Interface de dialogue

  • Fonction technique : Dialoguer avec l’utilisateur

  • Solution technique : des boutons poussoirs, et des LEDs permettent l’acquisition d’informations sur les choix de l’utilisateur et d’informer l’utilisateur.

Commande

  • Fonction technique : être commandé à distance

  • Solution technique : une télécommande avec des boutons poussoirs et un capteur infra-rouge pour donner et recevoir le signal. Il y a également un capteur infra-rouge sur le vidéo projecteur pour donner et recevoir le signal.

Dispersion thermique

  • Fonction technique : disperser la température

  • Solution technique : plusieurs ventilateurs pour évacuer la chaleur

Projection

  • Fonction technique : projeter l’image sur un écran avec une grande qualité

  • Solution technique : une lentille claire et une partie pour changer la distance focale

Analyse de la lampe

Le vidéoprojecteur peut envoyer des images sur un espace devant lui. Pour cela, il utilise une lampe, située dans sa partie avant.

Lampe du vidéoprojecteur (Source : Cdiscount)

Lampe du vidéoprojecteur (Source : Cdiscount)

Pour cela, le vidéoprojecteur enregistre l’écran de l’ordinateur grâce à un câble les reliant tous deux. Les images sont sous forme d’information électrique entre l’ordinateur et le vidéoprojecteur, puis ce dernier reconvertit le signal reçu en image qui ressort sous forme de lumière par la lampe.

Système de vidéoprojection (Source : Onisep)

Système de vidéoprojection (Source : Onisep)

 

Impact environnemental

Il y a quelques pièces mécaniques du vidéo projecteur sont en plastique, issu du pétrole, une ressource en voie d’épuisement.

  • Le vidéo projecteur ne fait pas de bruit

  • Le vidéo projecteur utilise beaucoup de composants électroniques. La fabrication des composants électroniques à fort impact environnemental (consommation d’énergie, d’eau, de produits chimiques, …). De plus ces composants se recyclent difficilement.

  • Le vidéo projecteur consomme beaucoup d’énergie

Evolution possible pour réduire son impact :

Réduction de l’énergie qui l’alimente et de ses composants.

Clément C-G. et Xuechun W.

Analyse fonctionnelle de l’Eolienne « Rutland 503 Windcharger »

1) Présentation du système choisirutland-503

Vidéo de présentation: https://www.youtube.com/watch?v=9OqLZ9Ur8po


2 Analyse du besoin

2.1 Fonction globale

Cette éolienne est prévu pour capter l’énergie du vent et la transformer en énergie électrique pour l’utiliser dans le domaine domestique.

2.2 Fonctions de service et contrainte

. Être capable de s’adapter à la direction et à la force du vent.

. Être stable sur sa structure

. Capter le vent.

. Être facile à l’emploi

. Donner un montant suffisant d’électricité.

. Ne pas être trop bruyant

. Ne pas être trop lourd

. Pouvoir être installé facilement.

. Respecter les normes de sécurité


3 Analyse du système

shéma fonctionnelle de l'utilisateur

diagramme pieuvre


4) Quelques fonctions techniques et solutions techniques

4.1 Générateur

– Fonction technique : Produire de l’électricité

– Solution technique :Un Générateur qui se met en mouvement par les hélices afin de produire de l’énergie électrique.

4.2 Des pales

– Fonction technique : Acquérir la force du vent pour alimenter le générateur

– Solutions techniques : Des pales/hélices plastiques très légers

4.3 La tête qui tourne

– Fonction technique : s’orienter en fonction de la direction du vent

– Solutions techniques : Une base du métal qui permet à la tête se tourner facilement

4.4 Stabilisateur

– Fonction technique : Stabiliser la tête d’éolienne

– Solution technique :Un stabilisateur en métal (gouvernail), fixé derrière l’éolienne


5) Analyse du générateur

L’énergie mécanique créé par les hélices est transformé en énergie électrique par le générateur.

lien internet source www.powerwind.co

le principe du fonctionnement du générateur

On place une hélice sur le rotor du générateur. l’action mécanique produite est transformé en énergie mécanique (voir schéma) .

l’énergie produite est ensuite stocké dans des batteries, afin d’être utilisée plus tard, et par d’autres appareils

plan et dimansion de l'eolienne

shema-4

Pour consulter l’article sur les éolienne et leur fonctionnement :                     www.éolienne-particulier.info


6) Impact environnemental

– L’éolienne ne demande pas de source d’énergie électrique

– L’éolienne demande moins d’espace que les panneaux solaires

– L’éolienne fait du bruit lorsque ses hélices tournent en raison des frottements des hélice avec le vent

– Ne fonctionne qu’en présence de vent

– Ne fonctionne pas en intérieur

– La construction est simple et respectueuse de l’environnement

– Les pièces extérieurs d’éolienne sont en plastique, issu du pétrole, une ressource en voie d’épuisement.

– Evolution possible pour réduire son impact :

. Réduction du bruit.

 


Travail réalisé par Large Rémi et Stepanishchev Oleksiy, élèves en 1S2

Le 13/09/2016


 

Drone AR Parrot

 Analyse du Drone AR Parrot

1     Système choisi : AR Drone Parrot 1.0

drone-ar-parrot-coque-protection-helices-lp2i

Drone AR Parrot avec sa coque de protection

drone-ar-parrot-coque-protection-systeme-lp2i

Drone AR Parrot avec sa coque simple

AR Drone Parrot (avec ses coques prévues pour l’extérieur/intérieur) (Source : LP2I)

Vidéo de présentation du drone : https://www.youtube.com/watch?v=RrWRVAqNgUQ

 2     Analyse du besoin

 2.1      Fonction globale

Ce drone est prévu pour voler en intérieur et en extérieur tout en enregistrant des images et en étant piloté via un smartphone avec une application gratuite, téléchargeable sur Android et iOS.

 

 2.2      Fonctions de service et contrainte

bete-a-cornes

Diagramme bête a corne du drone AR Parrot.

Source : diagramme « bête à cornes »,LP2I

Diagramme pieuvre du drone AR Parrot.

Source : diagramme « pieuvre » LP2I

Repère Liste des fonctions de service et contraintes
Surveillance (FP) Surveiller en direct via une caméra
Alimentation (FC1) Etre alimenter par une batterie
Résistance (FC2) Résister à l’environnement
Commande (FC3) Etre télécommandable à longue distance

 3     Analyse du système

 3.1      Fonctionnement, vu de l’utilisateur

screenshot-1-play-store

Capture d’écran via AR.Freeflight sur Google Play Store

screenshot-4-play-store

Capture d’écran via AR.Freeflight sur Google Play Store

screenshot-2-play-store

Capture d’écran via AR.Freeflight sur Google Play Store

 

 

 

 

 

 

 

Source : Capture d’écran de l’application AR.Freeflight, Google Play Store

L’utilisateur télécharge l’application de pilotage AR.Freeflight du drone sur Internet s’il est déjà en possession d’un smartphone Android ou iOS. La connexion entre le drone et le smartphone s’effectue via une connexion Wi-Fi. Une fois la connexion effectuée, l’utilisateur voit en direct sur son smartphone ce que « voit » la caméra frontale du drone comme s’il était dans un cockpit. Le pilotage d’effectue grâce aux deux joysticks tactiles ci-dessus, l’un pour l’altitude l’autre pour la direction. Si la liaison Wi-Fi vient à se couper, le drone dispose d’un pilote automatique qui le posera en douceur. L’autonomie du drone est de 12 minutes environ pour un temps de charge de 1h30.

 

 3.2       Matière d’œuvre et valeur ajoutée.

Le drone est équipé d’une caméra à grand angle (93°) de 640×480 pixels, qui lui permet de retransmettre en direct les images qu’elle « voit » sur le smartphone de l’utilisateur mais aussi d’enregistrer les images filmées ainsi que le lieu et la date de l’enregistrement.

 4     Quelques fonctions techniques et solutions techniques

 4.1      Interface de dialogue

– Fonction technique : Dialoguer avec l’utilisateur

– Solution technique : Retransmettre en direct les images que voit le drone sur le smartphone de l’utilisateur via une caméra et une connexion Wi-Fi.

 4.2      Capteurs

– Fonction technique : Acquérir des informations sur l’altitude à laquelle se trouve le drone.

– Solutions techniques : Altimètre à ultrason (40 kHz)

 4.3      Moteurs

– Fonction technique : Générer une action mécanique pour faire voler le drone.

– Solutions techniques : Quatre moteurs sans balai brushless (35 000 tr/min 15 W)

 4.4      Alimentation

– Fonction technique : Alimenter en énergie électrique de manière autonome

– Solution technique : Batterie au Lithium-polymère (11,1 V, 1 000 mAh)

 

 5     Analyse de l’altimètre à ultrason

Le drone peut calculer à quelle distance il se trouve du sol et retransmettre cette donnée en direct grâce à l’altimètre à ultrason. Il s’agit tout simplement d’un émetteur et d’un récepteur d’ondes ultrason, inaudibles à l’oreille humaine, situés sous le drone.

drone-ar-parrot-vue-de-dessous-wikipedia

AR Drone Parrot avec sa coque de protection

Source : Wikipedia

Principe de fonctionnement du capteur

L’émetteur va emmètre des ondes ultrason qui vont mettre un certain temps à se réfléchir sur le sol et plus le drone est en altitude, plus les ondes vont mettre de temps à rebondir contre le sol et à revenir vers le récepteur. Le drone n’a plus qu’à calculer l’altitude du drone en fonction du temps qu’ont mis les ondes ultrasons à se réfléchir sur le sol. Ce calcul se faisant quasi-instantanément, du point de vu de l’utilisateur, c’est en direct.

exemple-demetteur-recepteur-dondes-ultrason-ronan-chardo-copie

Photographie d’un émetteur/récepteur à ultrasons

Exemple d’émetteur/récepteur ultrasons, Source : ronan-chardonneau.fr

schema-fonctionnel-emmeteur-recepteur-ondes-ultrasons-lp2i

Schéma fonctionnel de l’émetteur/récepteur à ultrasons

Principe de fonctionnement d’un altimètre à ultrason (LP2I)

 

6  Impact environnemental

– Le drone consomme très peu d’énergie électrique car il fonctionne sur batterie

– Le drone est fabriqué principalement à partir de fibre de carbone et de polypropylène expansé qui sont des matériaux recyclables.

– Les pièces mécaniques du drone sont en plastique, issu du pétrole, une ressource en voie d’épuisement.

 

Félix.H et Quentin.D

Analyse fonctionnelle d’une centrale houlomotrice

Nous avons étudié un système qui s’appelle la centrale houlomotrice. La centrale houlomotrice produit de l’électricité grâce à l’énergie mécanique des vagues et le redistribue dans un réseau de distribution par des câbles situés sur le sol marin. Ce système est très utilisé dans les zones côtières à forte agitation (beaucoup de vagues) comme la Bretagne ou d’autres régions du monde comme l’Australie. Contrairement au centrale nucléaire, la centrale houlomotrice est écologique, autonome et ne nuis pas a son environnement. Malgré tout ça la centrale à quelques contraintes, elle doit pouvoir résister aux intempéries, a la corrosion et au fouling. Si la centrale rencontre un problème au niveau du dispositif sous marin, une commande de besoin de maintenance va être envoyée au dispositif depuis le centre de commandes et si le résultat de la commande est positif, le dispositif va émerger pour faciliter la réparation ou maintenance.

FS : Fonction de service CS: Contraintes

FS : Fonction de service
CS: Contraintes

Voici une vidéo explicative de la centrale : https://www.youtube.com/watch?v=Z11mbfiC66o

 

Auteurs : DUMAN Inan et THOREAUX Nathan

Compte-Rendu de la tondeuse autonome Automower 430x

http://cdn.husqvarna.com/dimage.axd/productHuge/h310-0866/45307872.jpg

Husquvarna Automower 430x

Fonctions de l’objet étudié
Fonctions de Service
Tondre l’herbe (FS1)
Être dirigeable par Smartphone (FS2)
Pouvoir être repéré (FS3)
Doit détecter les obstacles sur la route via un câble et des capteurs
Contraintes
Devoir se recharger sur la base (CS1)
Être connectable à internet pour pouvoir être contrôlé via smartphone (CS2)
Avoir des boutons pour être contrôlé directement (CS3)
Posséder une Puce GPS pour être repérable (CS4)
diagramme

Nous avons fait une analyse fonctionnelle d’un aspirateur robot .

Une tondeuse autonome a les fonctions d’une tondeuse ordinaire (tondre l’herbe) mais d’une façon autonome (sans l’intervention de l’Homme). De plus, elle est moins bruyant qu’une tondeuse à moteur thermique.
Pour configurer la tondeuse autonome Husqvarna AUTOMOWER 430x, , cette dernière est équipé d’une interface avec des boutons et un écran LCD pour contrôler la tondeuse .
command

Représentation de l’interface de la tondeuse . Image provenant du manuel d’utilisation

Ces composants répondent à la fonction d’usage Comment contrôler la tondeuse ? , ce qui lui permettra de pouvoir être contrôlée sans smartphone , car elle peut aussi être contrôlée via un smartphone .
La prise pour recharger est située à l’avant , le robot se met dans une station de charge , qui lui sert également pour se repérer .
Pour avancer , le robot avance aléatoirement jusqu’à croiser un cable , qui lui indique la limite du terrain . il doit donc faire demi tour pour continuer , jusqu’à ce qu’il retourne sur la station de charge , soit car le délai pour tondre est terminée , soit car l’utilisateur a renvoyé le robot sur la base ( bouton PARK ou via son smartphone . )
Il est composé de lames , pour couper l’herbe, de capteurs divers pour voir si la tondeuse n’est pas levé (pour arrêter les lames) , pour voir si le câble est proche pour retourner a la base , etc …
Il possède également une puce GPS pour pouvoir être repéré via smartphone .
Et d’une puce internet pour pouvoir recevoir des instructions du smartphone .
L’appareil doit être également élégant pour attirer une clientèle , surtout vu le prix de plus de 3000€ .
L’herbe est coupée et non arraché, de manière homogène mais n’est pas récupérée par la tondeuse.

plan

Concernant l’interface de la tondeuse , la solution technique est constituée de boutons poussoirs , ainsi qu’un écran LCD permettant l’acquisition d’information sur le choix de l’utilisateur (mode de fonctionnement) et d’informer l’utilisateur.
La fonction technique des capteurs est , eux , d’acquérir des informations sur l’environnement de la tondeuse (obstacle devant la tondeuse, soulèvement de la tondeuse) , les solutions étant des capteurs ultrasoniques .  
Le déplacement est assuré par des moteurs , la fonction technique est de générer une action mécanique pour déplacer le robot , la solution est 2 moteurs électriques .
L’alimentation est elle assuré par une batterie au lithium-ion , dont la fonction technique est d’alimenter en énergie électrique la tondeuse de manière autonome .
Son impact environnemental est relativement élevé , car même si la tondeuse fonctionne sur batterie , elle contient bien plus de composants électroniques, chère à produire et polluants , comme la batterie dont la fabrication est très polluante , et la coque est faite de pétrole , une ressource en voie d’extinction .

tondeuse-du-djoSystème de coupe de la tondeuse Automower 430x

(source : Les Numériques )
Enfin , pour couper l’herbe , elle utilise des lames circulaires fonctionnant par inertie .

Sources additionnelles :

Application – AUTOMOWER CONNECT

https://www.youtube.com/watch?v=pADyVgU2EF4

Présentation et test – HUSQVARNA AUTOMOWER 330X

https://www.youtube.com/watch?v=RXfcSe0407A

https://www.youtube.com/watch?v=Dp_dW0ywveU

Présentation système de coupe

https://www.youtube.com/watch?v=qXknnKAbsDQ

Présentation système de recharge.

https://www.youtube.com/watch?v=px-ybuClf3A

Analyse fonctionelle : Centrale nucléaire à réacteur à eau présurisé

Présentation global

Une centrale nucléaire à réacteur à eau pressurisé est une centrale qui produit de l’énergie grâce à de la vapeur d’eau, chauffé par de l’uranium enrichie, qui actionne une turbine, qui transmet l’énergie mécanique à un générateur, qui produit de l’électricité.

Fonctionnement général

Légende et source à préciser

Légende et source à préciser

Schéma de principe d’une centrale nucléaire REP. ( Wikipédia )

Analyse du besoin

          Fonction globale

La centrale nucléaire doit fournir de l’énergie sur un réseau électrique à partir d’uranium enrichi.

 

bete-a-corne-centrale-nucleaire

         Fonctions de service et contrainte

. Être proche de la mer ou d’un cour d’eau

. Avoir une enceinte de sécurité de 10 km

. Produire un maximum d’énergie avec un minimum d’uranium enrichie

. Respecter les normes de sécurité

. Produire le moins de déchet possible

. Respecter des normes de taux de radioactivité dans l’eau rejeté.

 

Analyse du système

       Fonctionnement, vu de l’utilisateur

Pour l’utilisateur ( EDF par exemple ) la centrale nucléaire produit de l’électricité pour la distribuer sur le réseau électrique.

      Matière d’œuvre et valeur ajoutée

La centrale nucléaire agit sur de l’eau, qu’elle transforme en vapeur grâce à de l’uranium enrichis.

      Flux

flux-centrale-nucelaire

 

– Sur ce schéma fonctionnel on représente des flux d’informations (en rouge ici) et des flux d’énergie (en vert ici).

 

 

Quelques fonctions techniques et solutions techniques

       Mur d’enceinte

L’enceinte protectrice du noyau d’une centrale nucléaire est faite d’acier et de béton armé. Cette enceinte est construit pour éviter les fuites radioactive en cas d’accident tel que la fusion du noyau. Les nouveaux Réacteurs pressurisés européen (EPR) possède une enceinte de confinement composée de deux parois de béton: une paroi interne en béton précontraint ( technique de construction qui permet le renforcement du béton), recouverte d’une peau métallique coté intérieur et une paroi externe en béton armé, chacune de ces parois a une épaisseur de 1,3 mètre.

 

      Système de refroidissement

 

Lors de la sortie du deuxième circuit l’eau sous forme de vapeur traverse le circuits de refroidissement avant de retourné dans le deuxième. La vapeur passe par un condensateur qui transforme la vapeur en eau liquide. Se condensateur est composer d’un tuyaux qui ramène la vapeur d’eau et un autre tuyaux ,qui lui, vient pomper de l’eau froide dans une source (fleuves, rivière) et la fait passer dans le condensateur pour refroidir la vapeur. L’eau froide réchauffer par le condensateur est rejeté dans une cheminée avec un système aéroréfrigérants.

Vidéo EDF : https://www.youtube.com/watch?v=xp3KP1YPnqU

 

Analyse du capteur de chaleur

Il y a plusieurs types de sondes de chaleur aux niveaux du circuits primaire celle que l’on va étudier se situe aux niveaux entre le réacteur et le pressuriseur . C’est une sonde de type à temps rapide c’est à dire que le la prise et l’envoie de l’information se fait plus rapidement qu’une sonde standard ; Ce qui permet de mesurer avec beaucoup de précision les variation de température et régulé la pression en conséquence.

 

 Impact environnemental

Une centrale nucléaire rejette de nombreux déchets classifiés en plusieurs catégories :

  • Les TFA, ou déchets très faiblement actifs, issus principalement de matériaux contaminés issus de démantèlement de centrale.

  • Les déchets de classe A, ce sont des déchets à vie courte, avec une faible ou moyenne activités. Ils leurs faut 300 ans pour perdre leur radioactivité. Ils représentent environ 90 % des déchets produit en France. Ils sont compacté dans des fûts et stocké en surface.

  • Les déchets de classe B et C, ce sont des déchets a vie longue avec une très haute radioactivité, il leurs faut plusieurs millier voir centaine de millier d’année pour la perdre. Ils sont enfoui sous une couche de bitume ou de verre. Ils représentent 10% du volume total de déchets.

De plus, les rejets liquides et gazeux autorisés contaminent les sols et les nappes phréatiques.

Cependant, une centrale nucléaire émet beaucoup moins de CO2 que d’autre moyen de production non renouvelable. En effet elle produit 6 gramme de CO2 par KWh pour 978 pour le charbon.

 

 

 

Onshape un logiciel professionnel de modélisation 3D innovant et gratuit pour un usage pédagogique

http://www.fabbaloo.com/blog/2015/9/24/onshape-receives-usd80m-fuel-for-massive-growth

Sommaire

  1. Objectifs de cet article
  2. Pourquoi Onshape va probablement percer dans l’éducation
  3. Onshape est un logiciel encore jeune mais innovant
  4. Une application web qui utilise le cloud de manière innovante
  5. Pourquoi les utilisateurs de SolidWorks peuvent facilement passer à Onshape
  6. Onshape propose énormément d’aide … mais en anglais pour le moment
  7. Comment commencer à utiliser Onshape
    7.1) Créer un compte compte Education sur Onshape
    7.2) Premières modélisations avec Onshape : des pièces d’un jeu de construction à vocation pédagogique.
    7.3) Modélisation avec Onshape d’une barre avec des trous de fixation par vis
    7.4) Modélisation avec Onshape d’une barre utilisable pour simuler, imprimer et assembler (sans vis) un mécanisme articulé

 

1) Objectifs de cet article

Je commence à utiliser Onshape depuis juillet 2016 et je lui trouve de plus en plus d’atouts. Je pense qu’Onshape devrait me permettre de mener plus efficacement avec mes élèves des activités autour de la modélisation de mécanismes.

Je rédige cet article pour partager mon travail et permettre aux enseignants de découvrir Onshape, identifier ses principaux avantages et inconvénients, commencer à l’utiliser avec un tutoriel en français, tester des utilisations pédagogiques plus approfondies en lien avec une imprimante 3D et le logiciel de simulation SimScale notamment, …
Je complète (et corrige) progressivement cet article. J’en profite pour lancer un appel à tous ceux qui utilisent déjà Onshape ou qui veulent essayer Onshape pour que nous partagions notre expérienceN’hésitez pas à me transmettre vos remarques, vos suggestions, les difficultés rencontrées avec vos élèves, …

Vous pouvez laisser un commentaire (à la fin de cet article) ou me contacter en privé à l’adresse suivante :
daniel.pers@ac-poitiers.fr

 

2) Pourquoi Onshape va probablement percer dans l’éducation

workspace-tuto-2-fenetres-v2

Espace de travail d’Onshape, en version PC ici, affichée sur 2 fenêtres. Amortisseur de vélo issu d’un tutoriel d’Onshape (Source : LP2I)

Onshape est un nouveau logiciel professionnel de modélisation 3D qui intéresse rapidement de plus en plus de monde.
Onshape est commercialisé depuis décembre 2015 seulement. Il a pour ambition de concurrencer directement les leaders du marché de la CAO 3D professionnelle tels que SolidWorks, AutoCAD, AutoDesk Inventor, AutoDesk Fusion 360, … Son mode de commercialisation est original : 100 $ par mois pour une utilisation professionnelle. Cela intéresse beaucoup d’entreprises pour qui l’achat de licences représente un coût difficile à supporter économiquement, surtout quand il faut racheter une nouvelle licence pour bénéficier des dernières améliorations du logiciel (y compris la correction de bugs).

Il y a beaucoup de monde sur le marché de la CAO 3D. SolidWorks occupe 22 % de ce marché en 2015. Onshape veut sa part du gâteau ! (Source : quora.com)

Le nombre de requêtes envoyées par les utilisateurs au service support d’Onshape progresse rapidement depuis décembre 2015, date à laquelle a débuté sa commercialisation. Cela montre qu’Onshape est de plus en plus utilisé. (Source : close2circle.com/es-onshape-el-futuro-del-cad-confirmacion-no1).

Onshape est une startup exceptionnelle déjà valorisée à plus de 800 millions de dollars (d’après le Boston Business Journal). Les spécialistes lui prédisent un grand succès commercial.

Mais Onshape intéresse aussi beaucoup tous ceux qui n’en font pas un usage professionnel comme les établissements scolaires, les FabLabs, … car Onshape est gratuit pour un usage pédagogique, sans aucune limitation ! Pour la modélisation 3D de mécanismes, les établissements scolaires utilisent aujourd’hui majoritairement SolidWorks. Ils ont de moins en moins les moyens de renouveler leur licence. Les budgets sont de plus en plus contraints, que ce soit les budgets venant de la Région, du Département, de la taxe d’apprentissage, … Pour notre lycée, le renouvellement de notre licence SolidWorks nous a coûté environ 2000 € pour une licence valable 3 ans seulement. Cela représente un lourd investissement, comparé par exemple aux 1000 € environ investis dans notre imprimante 3D (utilisable au moins 3 ans).

Les contraintes budgétaires pousseront de plus en plus d’établissements scolaires à choisir des logiciels gratuits (Source : Fotalia)

 

Bien entendu, Onshape espère que ces licences gratuites pour un usage non professionnel, lui permettra de gagner des parts de marché dans les années avenir. Onshape va même plus loin : il investit dans l’usage pédagogique de son logiciel en embauchant une équipe dédié. Cela lui coûte moins cher que faire de la publicité, cela permet d’augmenter très rapidement la communauté des utilisateurs, …

Le modèle économique d’Onshape attire aussi de nombreux partenaires qui proposent des applications compatibles avec Onshape. Je regrette pour le moment que la plupart de ces partenaires ne proposent pas encore de licence pour l’éducation.

Pour la simulation avec Onshape, SimScale semble être la solution la plus intéressante : simulation mécanique (résistance des matériaux), simulation mécanique des fuides (aérodynamisme …), simulation thermique, le tout avec une licence gratuite pour l’éducation (SimScale est un logiciel open-source).

Simulation des contraintes mécaniques dans un mousqueton grâce au logiciel SimScale à partir d’une modélisation 3D (Source : simscale.com/projects/AnnaFless/dynamic_analysis_of_a_carabiner)

On peut voir l’importance de bien fermer le mousqueton pour optimiser sa résistance (Source : SimScale).

Analyse avec SimScale de la déformation de la pièce en fonction du matériau choisi (Source : www.simscale.com/projects/AnnaFless/dynamic_analysis_of_a_carabiner/ )

Lire la suite

Projet ACF FabLab

Le LP2I a inauguré le 5 juillet 2016 les nouvelles salles entièrement dédiées à son projet Futur Classroom Lab qui permettront de multiples expérimentations pour faire évoluer nos pratiques pédagogiques vers les compétences du 21 ième siècle.
Ces salles sont déjà en partie équipées de moyens innovants. Un des objectifs pour cette année scolaire 2016-2017 est de mettre en place un FabLab dans ces nouveaux locaux. Ce FabLab permettra aux élèves de concevoir et fabriquer des objets avec des moyens de prototypage rapide, notamment une imprimante 3D. La création de ce FabLab sera menée avec l’aide d’élèves motivés par ce projet. Nous espérons que dès la rentrée de septembre 2016, un groupe d’au moins une dizaine d’élèves prendra en main ce projet dans le cadre des ACF (Activités Complémentaires de Formation). Les objectifs envisagés aujourd’hui pour ce projet ACF FabLab sont décrits ci-dessous.

– Définir la démarche de création du FabLab du LP2I
L’objectif est de proposer une démarche utilisable dans la plupart des établissements scolaires, en tenant compte des partenariats spécifiques qui peuvent être développés dans les établissements.

– Définir les moyens nécessaires
Les moyens choisis devront prendre en compte les contraintes fortes que connaissent les collèges et les lycées, notamment sur le plan financier. Il faudra choisir des solutions optimums que nous pourrons conseiller à tous les établissements (collèges et lycées) qui souhaitent se lancer avec un budget très limité. Nous écarterons les solutions ultra low-cost qui peuvent donner des résultats décevants ou être trop complexes à l’usage. Par exemple pour l’achat d’une nouvelle imprimante 3D, nous choisirons le meilleur matériel à moins de 1000 € permettant une utilisation simple et satisfaisante.
Je propose par exemple l’imprimante 3D Hephestos 2 de BQ, vendue en kit pour 850 €, qui peut être assemblée en moins de 5 h par une personne sans compétences particulières.

Imprimante 3D Hephestos 2, livrée en kit pour 850 € (source : les imprimantes3d.fr)

Dans le souci d’innover, du matériel plus innovant devra être envisagé comme ce scanner 3D low-cost (250 €).

– Créer des tutoriels pour faire vivre un FabLab :
. comment assembler l’imprimante 3D achetée en kit,
. comment mettre en oeuvre cette imprimante 3D dans le cadre d’activités pédagogiques,
. comment concevoir des objets constitués de pièces imprimées, conçues avec des logiciels gratuits comme BlocksCAD, ou OnShape,
. comment concevoir des objets motorisés, interactifs, communicants, pilotés par une carte électronique programmable de type Arduino, avec des logiciels libres et gratuits, notamment Blockly Arduino et App Inventor 2.

A chaque fois on prendra en compte les besoins des utilisateurs souhaitant se limiter à une utilisation basique du FabLab (voire une simple activité de découverte en 1 h ou 2 h pour un groupe d’ado.), et ceux souhaitant en faire une utilisation plus avancée avec une progression sur l’année.

– Développer l’aspect international et culturel de ce FabLab :
. développer des échanges et des coopérations avec des établissements étrangers (2 lycées de Côte d’Ivoire sont déjà intéressés par de tels échanges), grâce à Internet mais aussi en développant l’usage de la visioconférence,
. se questionner sur les aspects interculturels, économiques, développement durable, …

Programmation de cartes Arduino dans un FabLab en Côte d’Ivoire (dans les lycées techniques d’Abidjan et de Bouaké) créé par Eric Assi, enseignant (source : facebook.com/FamaLAB.ci/)

 

Les personnes intéressées par ce projet de création d’un FabLab au LP2I ne doivent pas hésiter à laisser un commentaire.

Daniel Pers, enseignant en Sciences de l’Ingénieur au LP2I

Robotique et programmation au LP2I

J’ai participé à une réunion sur le développement d’une formation pour les enseignants sur le thème de la robotique et de la programmation, sur la plateforme M@gistère de l’Académie de Poitiers.

Cela a été l’occasion pour moi de commencer à faire le point sur mes choix actuels et mes propositions pour l’avenir en ce qui concerne l’enseignement de la robotique et de la programmation. Je précise tout de suite que je suis convaincu que de nombreux choix peuvent être communs pour le niveau collège et le niveau lycée.

Cet article est en cours de rédaction !

1) Présentation de ma situation actuelle

– J’enseigne les Sciences de l’Ingénieur au Lycée Pilote Innovant International de Jaunay-Clan (près de Poitiers).
Je gère depuis 2012 le blog de la SI au LP2I.
– J’ai effectué depuis 3 ans un complément de service en Technologie au collège Jean Macé de Châtellerault. Je n’enseignerai pas au collège l’année prochaine.
Je gère depuis 2013 le blog de la techno au collège Jean Macé.

2) Matériel utilisé pour les activités en robotique et programmation
– Carte électronique programmable

Je travaille avec Arduino depuis 3 ans, aussi bien au lycée qu’au collège.

Je conseille d’utiliser des cartes Arduino qui sont compatibles avec le design de référence actuel, à savoir l’Arduino Leonardo. Il s’agit des cartes Arduino Micro (mon choix), Arduino Roméo (dont le circuit L298 est obsolète), Arduino Yun (dont l’alimentation ne possède pas de régulateur 5V mais qui est très intéressante quand même).

L’arduino Micro utilise le même schéma électrique et les mêmes composants que l’Arduino Léonardo (mais pas la même connectique).

Je conseille d’utiliser cette Arduino Micro avec la carte d’entrée/sortie DFR0012 de DFRobot :
http://www.gotronic.fr/art-shield-e-s-dfr0012-pour-nano-19256.htm
http://www.dfrobot.com/wiki/index.php/Arduino_Nano_IO_Shield_(SKU:_DFR0012)
http://www.dfrobot.com/index.php?route=product/product&keyword=DFR0012&category_id=0&description=1&model=1&product_id=68

L’ensemble DFR0012 + Arduino Micro remplace avantageusement une Arduino Leonardo avec une autre carte d’entrée/sortie, essentiellement pour des questions de connectique et de modularité, mais aussi de prix.
Il existe aussi une solution low cost pour remplacer la DFR0012 :
http://www.banggood.com/5Pcs-Multi-Function-Funduino-Nano-Shield-Nano-Sensor-Expansion-Board-p-970410.html (attention lot de 5)
La connectique est un peu plus courte : 4 broches de moins (inutiles), mais compatible Arduino Micro.
– Imprimante 3D

J’utilise une Tobeca 2 depuis 2 ans et j’envisage l’achat d’une imprimante 3D de marque BQ (une Hephestos 2 à 850 €, en kit).

Mise à jour du 11/09/2016 : J’ai rédigé ici un article sur notre projet de création d’un FabLab au LP2I.

– Autre matériel utilisé

Article présentant une partie du matériel que j’utilise au lycée et au collège.

 

3) Logiciels utilisés pour les activités en robotique et programmation

– Programmation Arduino
Après deux années d’utilisation d’Ardublock, je suis passé sur Blockly Arduino développé par Sébastien Canet, enseignant en Technologie, et formateur, dans l’académie de Nantes.

Article présentant l’intérêt pour moi du logiciel Blockly Arduino.

– Modélisation 3D

Je cherche depuis 2 ans une alternative à SolidWorks. J’ai choisi cette année ces deux logiciels :
. BlocksCAD
Il s’agit d’un logiciel conçu pour faire de la modélisation en 3D avec des enfants, avec le principe du logiciel Scratch.
C’est une application web libre et gratuite, traduite en français, basée sur blockly et OpenSCAD.
J’ai déjà écrit un premier article sur BlocksCAD.

. Onshape
C’est un nouveau logiciel professionnel de CAO 3D, sorti en décembre dernier qui a pour objectif de concurrencer directement SolidWorks avec une approche originale et innovante. Il est compatible en import et en export avec de nombreux logiciels dont SolidWorks. C’est une application Web dont l’usage est gratuit pour un usage pédagogique, sans aucune limitation. Des applications multi-plateforme existent pour tablettes et smartphones (y compris pour éditer des modèles 3D). Onshape me semble complémentaire de BlocksCAD pour un FabLab équipé d’une imprimante 3D, que ce soit au lycée ou au collège.
Je suis en train de découvrir Onshape. Je souhaite écrire prochainement un premier article sur Onshape pour faire connaitre ce logiciel qui marquera probablement un tournant dans la CAO 3D, notamment dans l’enseignement et dans les FabLabs où les moyens manquent pour acheter des licences ou des ordinateurs performants.
Lien vers l’application web Onshape.
Lien vers l’application Onshape pour Androïd.

Mise à jour du 11/09/2016 : j’ai rédigé ici un nouvel article sur Onshape.

 

4) Propositions pour le choix des moyens à utiliser pour enseigner la robotique et  la programmation au collège et au lycée
– Privilégier le matériel et les logiciels open source.
– Privilégier le matériel et les logiciels compatibles Arduino qui est devenu un standard de fait.
– Privilégier la carte Arduino Leonardo et ses dérivés (l’Arduino Micro notamment) qui correspond au design de référence actuellement. L’Arduino Uno est obsolescente (et n’utilise pas un câble USB micro standard).
– Privilégier les logiciels de programmation graphiques, avec une syntaxe proche de Scratch, devenu un standard de fait. La programmation en langage C est hors programme, aussi bien au collège qu’au lycée pour la filière S.
– Privilégier les logiciels de programmation permettant aux enseignants (directement ou avec l’aide d’autres enseignants) de créer leurs propres blocs sans utiliser des outils logiciels complexes, et sans avoir à passer par une entreprise marchande. ce n’est malheureusement pas le cas d’Ardublock.

– Privilégier une utilisation de l’imprimante 3D comme moyen de prototypage rapide permettant de valider des solutions techniques de manière authentique, avec de la fabrication de pièces ayant un véritable rôle dans la chaîne d’information ou la chaîne d’énergie du système (par exemple des pièces permettant de transmettre un mouvement).

– Privilégier des supports low cost utilisables dans les établissements disposant de peu de moyens.

– Privilégier les supports motivants pour les élèves.

 

5) Proposition de parcours de formation en robotique et programmation au collège et au lycée

5.1) Approche fonctionnelle

Chaîne d’information et chaîne d’énergie.

Solutions techniques associées à chaque fonction.

Exemple de support possible : robot aspirateur

Chaines fonctionnelles

Schéma fonctionnel partiel d’un robot aspirateur : il représente des flux d’informations (en vert ici) et des flux d’énergie (en rouge ici). Source : LP2I

Document présentant quelques rappels sur la chaîne d’information et la chaîne d’énergie d’un robot aspirateur :

Chaine d’énergie et chaine d’information 120616

 

5.2) Solutions techniques pour acquérir des informations et générer des commandes pour la chaîne d’énergie

– Cas d’un capteur de type Tout Ou Rien

Exemple = capteur de collision.

– Cas d’un capteur analogique

Exemple = capteur de vide qui permet d’acquérir la distance entre le robot et le sol.

– Démarche expérimentale

Moyens matériels nécessaires = carte Arduino + câble USB + capteur de type tout ou rien (un simple contact suffit, sinon on peut simuler avec le clavier du PC).

Moyens logiciels = application web Blockly Arduino.

Interface de dialogue = écran du PC

– Ressources documentaires

A compléter

 

5.3) Solutions techniques pour alimenter la chaîne d’énergie et piloter des actionneurs

– Cas d’un servomoteur

C’est une solution simple qui intègre un moteur à courant continu, un réducteur (qui permet de réduire la vitesse de rotation et d’augmenter le couple), une interface de puissance, un capteur de position qui permet de commander un servomoteur directement en position. La rotation est généralement limitée à environ 180°.

Il existe aussi des servomoteurs commandés en vitesse appelés servomoteurs à rotation continue.

Un servomoteur peut être directement commandé par une carte Arduino. Sa tension nominale d’alimentation est généralement de 5V ce qui en simplifie la mise en oeuvre avec une carte Arduino.

. Approche expérimentale

Matériel nécessaire : une carte Arduino + un câble USB + un petit servomoteur low-cost type SG90 par exemple.

– Cas d’un moteur à courant continu avec une interface de puissance permettant de contrôler le sens de rotation et la vitesse de rotation.

. Approche expérimentale

Matériel nécessaire : une carte Arduino + un câble USB + une interface de puissance moteur standard + un petit motoréducteur basse tension (fonctionnant sous 5V pour éviter une deuxième alimentation en plus de l’USB).

 

5.4) Concevoir des pièces mécaniques pour transmettre un mouvement issu d’un actionneur

– Utilisation de BlocksCAD et de OnShape

Mise à jour du 11/09/2016 : j’ai rédigé ici un nouvel article sur Onshape.

5.5) Fabriquer rapidement le prototype d’un mécanisme pour valider une solution

– Utilisation d’une imprimante 3D

Article en cours de rédaction !

World Trade Center ( New-York )

=> Quelles sont les solutions innovantes retenues par le constructeur pour obtenir les performances souhaitées ?

=> Ces solutions correspondent-elle à un bon compromis pour le développement durable ?


1/ Présentation
La World Trade Center est un immeuble situé dans la ville de New York, conçu par l’architecte Minoru Yamasaki et a été inauguré le mercredi 4 avril 1973.
Il a était construit après la seconde guerre mondial pendant une période ou les États-Unis
connaissaient une grande période économique (1958 – 1973). Marquées par un incendie le 13 février 1975 puis par un attentat à la bombe le 26 février 1993, les tours jumelles ont été intégralement détruites par deux avions détournés le 11 septembre 2001.

2/ Structures porteuses
A – Analyse
La structure porteuse était conçu en acier et de béton. Elle est présenté verticalement comme si la largeur du bâtiment est tangente à la sphère de la Terre, puis perpendiculairement au plancher. Il y a également un réseau interne qui constitue le noyau central.
Des poutres étaient aussi mises en place transversalement pour stabiliser et rigidifier l’ensemble.
Les poutres qui soutiennent les planchers étaient des poutres treillis reliées d’un côté à une façade, et de l’autre, au centre de la tour.

Source : LP2i

Source : LP2i. De manière simple, vous pouvez visiter une autre image en cliquant sur ce lien ( Source : twintowerstpedot.wordpress.com )

B – Expérimentation
Avec notre expérimentation, nous avons déduis la force exercée par un objet pesant 500 g, sur une poutre en bois.

Force exercée sur une masse de 500 g

Source : LP2i

Par estimation, en mesurant la flèche, on obtient 90 mm pour une poutre d’un mètre de long. Dans un cas général, nous déduisons numériquement la charge unitaire :

Données :
$ b = 15 \: mm $ : « base de la poutre » ( en m )
$ h = L = 1 \: m $ : « hauteur ou longueur de la poutre » ( en m )
$ I_G = \frac{b \cdot h \cdot ( b^2 + h^2 )}{12} \iff I_G = 12.5 \: dm^{4} $ : « moment quadratique de la poutre » ( en m4 )
$ E = 10 \: GPa $ : « pression » ( en Pa )
$ f = 90 \: mm $ : « flèche » ( en m )
$ p = ? $ : « charge unitaire » ( en N·
m-1 )

\[
f = \frac{5 \: p \: L^{4}}{384 \: E \: I_G } \iff \: p = \frac{384 \: E \: I_G \: f}{ 5 \: L^{4} } \iff p = 86 \: 419 \: 440 \: N \cdot m^{-1}
\].
La charge unitaire est donc de 86 MN/m.
C’est pour cela que le concepteur a choisi de mettre plusieurs planchers ( Voir 2 partie A en une image ) pour que la charge unitaire et la flèche soit approximativement nulle.

3/ Destruction des deux tours
A – Lors de l’attentat du 11 septembre 2001
Le premier impact est celui de la Tour du Nord à 8h46, tandis que le deuxième impact est celui de la Tour du Sud à partir de 9h02. Il a fallu 102 minutes pour qu’il y ait un flambage de la Tour du Nord, et 56 minutes pour la Tour du Sud. Ce flambage provient de la flexion d’un poteau en acier, qui est passé de l’état solide à l’état liquide.
Pendant leurs impacts, à l’intérieur des deux tours, les températures ont atteint 1000°C ( maximum ) et les différents aciers ont pu atteindre les 700-800°C. Pour prendre un exemple avec l’eau, elle peut passer de l’état solide à l’état liquide lorsque la température est supérieure à 0°C ( jusqu’à 100°C ). D’une manière générale, on dit qu’elle est flexible comme une règle Maped mais verticalement.

 

Incendie WTC

La colonne ( en acier ) déformée avec l’incendie ( à l’intérieur de la World Trade Center ); Source : FEMA, Chapitre 2, 2002

En une autre image, on peut constater qu’une fois que l’avion est rentrée en s’autodétruisant, il faut que les poutres non-coupées tiennent n fois plus que les poutres coupées ( Exemple sur la Tour du Nord coupée par le premier avion ) :

Pendant les attentats du 11 septembre. Source : Slate.fr

Pendant les attentats du 11 septembre. Source : Slate.fr


B – Exemple avec Mario portant Luigi

( en cours… )

Etude 4 G2 E8 Exemple simple flexibilite dune poutre

Source ( pour les images prises ) : spriters-resource.com

Pour cela, il faut que Mario se tienne debout pour une longue durée comme pour la Tour Eiffel.

On note :
$ \overrightarrow{P} $ : le poids de Luigi ( légendé schématiquement en rose )
$\overrightarrow{R_{muscle}}$ : la force tenue par Mario ( légendé schématiquement en vert )
$\overrightarrow{R_{left}}$ : Bras gauche de Mario
$\overrightarrow{R_{right}}$ : Bras droit de Mario
$ \overrightarrow{R} = \overrightarrow{R_{left}} + \overrightarrow{R_{right}} $

Si on veut que les poutres soient équilibrés, en 2 équations, on a :
$ \overrightarrow{R_{left}} = \overrightarrow{R_{right}} = \frac{1}{2} \overrightarrow{P} $

Si : $ \sum \overrightarrow{F_{i}} \neq \overrightarrow{0} $ , alors Mario risquera de se faire aplatir. Notamment, le bâtiment risquera de se flamber.

Si : $ \sum \overrightarrow{F_{i}} = \overrightarrow{0} $ , alors Mario tiendra toujours debout. Le bâtiment reste solide et fixe.

C – Calculs de la vitesse d’effondrement lors du flambage des deux tours
Lors du flambage, en déterminant physiquement la vitesse d’effondrement, nous appliquons les 3 formules particulières afin d’en déduire les résultats trouvés.

Données :
$ d_1 = 526.6 \: m $ : Hauteur de la Tour du Nord ( avec l’antenne )
$ d_2 = 415.3 \: m $ : Hauteur de la Tour du Sud
$\overrightarrow{g} = 9.81 \: m \cdot s^{-2} $ : Accélération de la pesanteur
$ m = 485 \: kt $ : Masse des deux tours jumelles

Déterminons le temps nécessaire pour que les deux tours s’effondre en allant de leur hauteur jusqu’au sol :
\[
t_{WTC North} = \sqrt{ \frac{2 d_1}{ \overrightarrow{g} } } \iff \: t_{WTC North} = 10.36 s
\].
\[
t_{WTC South} = \sqrt{ \frac{2 d_2}{ \overrightarrow{g} } } \iff \: t_{WTC South} = 9.2 s
\].

Calculons la vitesse d’effondrement :
\[
v_{WTC North} = \overrightarrow{g} \times t_{WTC North} \\ \iff \: v_{WTC North} = 101 m \cdot s^{-1} \: \iff \: v_{WTC North} = 365 \: km \cdot h^{-1}
\].
\[
v_{WTC South} = \overrightarrow{g} \times t_{WTC South} \\ \iff \: v_{WTC South} = 90 m \cdot s^{-1} \: \iff \: v_{WTC South} = 324 \: km \cdot h^{-1}
\].

Une fois que la vitesse d’effondrement est déduite, nous calculons l’énergie cinétique :
\[
W_{WTC North} = 2^{-1} m \cdot {v_{WTC North}}^2 \\ \iff \: W_{WTC North} = 2.505 \: TJ
\].
\[
W_{WTC South} = 2^{-1} m \cdot {v_{WTC South}}^2 \\ \iff \: W_{WTC South} = 1.975 \: TJ
\].

En sachant qu’avec l’énergie dégagée par la destruction des deux tours, c’est presque équivalent à une masse allant de 472 à 598 tonnes de TNT.
Par estimation, certains habitants ont déterminé réellement ( sans précision ) le temps d’effondrement jusqu’au sol, approximativement 11.5 s ( pour la Tour du Sud ) & 12.6 s ( pour la Tour du Nord ). C’est la réaction du reste de la tour qui a permis de tenir le fragment du bâtiment ( qui est coupé en 2 ). C’est pour cela qu’on a pris un exemple avec Mario portant Luigi.

4/ Conçu pour le développement durable après les attentats du 11 septembre ?

Avantages Inconvénients
– Recyclage de l’acier

– La structure porteuse a résisté pendant 100 minutes avant que l’acier soit fondu

– Coût des dégâts très élevé pour l’état, la ville & la société

– Structure porteuse non-convenable

– Beaucoup de matériaux nocifs ( ex : Amiante )

– Beaucoup de personnes gravement malade ( poussières toxiques + incendie )

– Coefficient de sécurité trop important ( s > 2.5 )

 

5/ Conclusion

– La WTC s’est effondrée et a causé des dégâts très importants accompagnés de matériaux nocifs ainsi qu’un nuage de poussière toxique. La conception du bâtiment n’a pas pu respectée la contrainte sur la sécurité ( c’est-à-dire la solidité du bâtiment ). Mais si on protège l’acier avec du béton, elle aura un avantage sur la sécurité mais un inconvénient pour l’environnement ( impact sur l’environnement ).
– La structure porteuse doit être présenté autrement car il y a des risques de flambages ( voir 2 partie A ).

Centre nautique de Bayonne

Problématique: Pour le bâtiment ou la construction choisi par votre équipe :  

– Quelles sont les solutions innovantes retenues par le constructeur pour obtenir les performances souhaitées ?

– Ces solutions vous paraissent-elles correspondre à un bon compromis en terme de développement durable ?

Notre équipe étudie le Centre nautique de Bayonne, construit en 2010 et dont la caractéristique est d’être Haute Qualité Environnementale (HQE)1(source:http://architopik.lemoniteur.fr/index.php/realisation-architecture/centre_aquatique_des_hauts_de_bayonne/4629)

 

  • Introduction

 

Dans le cadre du plan de rénovation et de redynamisation urbaine lancé par la Ville de Bayonne, un nouveau centre aquatique a été implanté dans le quartier des Hauts de-Bayonne, prenant en compte les critères et exigences du développement durable et de l’éco-conception.

La municipalité́ a souhaité que cette construction soit labellisée Haute Qualité́ Environnementale (HQE). Ainsi, afin de respecter les contraintes du développement durable, le site propose:

  • une « parfaite » intégration du bâtiment dans le paysage ;
(http://architopik.lemoniteur.fr/medias/programme/projet/format/resize/4601/format4/projet_4629/h300coupe_540_360.jpg)

une « parfaite » intégration du bâtiment dans le paysage

(http://architopik.lemoniteur.fr/medias/programme/projet/format/resize/4601/format4/projet_4629/h300coupe_540_360.jpg)

  • une utilisation de matériaux sains et recyclables ;

 

  • une toiture végétale favorisant la gestion des eaux pluviales et participe à l’intégration du bâtiment dans le paysage ;

    une toiture végétale favorisant la gestion des eaux pluviales

  • une exploitation maximale des éclairages naturels ;

    une exploitation maximale des éclairages naturels

  • un bassins en inox permettant de limiter le traitement physico-chimique de l’eau car sa surface lisse empêche la fixation d’algues ou de champignons et facilite l’entretient, de monter plus rapidement en température et d’assurer une plus grande durée de vie des structures (de 20 à 40 ans). C’est de plus un matériau recyclable, léger et souple (résiste aux déformations dues aux mouvements de terrains ou aux légers choc par exemple). Mais cela reste tout de même un produit “de luxe”.  

 

  • La structure porteuse

 

  • Elle est constituée d’une charpente en bois lamellé collé, de poteaux ronds en bois et d’éléments verticaux en béton armé.
  • —->      Pourquoi le lamellé collé? 
  • Comme son nom l’indique, ce matériaux est composé de lamelles de bois collées, permettant ainsi de faire de grandes pièces de bois que l’on ne pourrait pas obtenir avec un arbre, de faire des formes complexes et comme il est très homogène, il possède de bonnes propriétés techniques. Cependant, c’est un matériaux qui reste cher. Cliquer ici pour plus d’information.
wuyanliuse

Schéma Structure porteuse Source: document Bac STI2D 2012

jiantou

déformation maximale de l’arbalétrier

La flèche, ici notée Umax, située à 15,85 m du nœud 4, est égale à:

Umax = 1.62*10-2* ((P2*L)/(E*I))

où E: module de Young du matériau constitutif de la poutre, en MPa

Bois Lamellé collé : E = 10 000 MPa

I : inertie de la section de la poutre, en m4  et I = (b*h3)/12 où b et h sont la largeur et la hauteur de la poutre

P2: charge appliquée dans la poutre, en N/m

L: portée de la poutre, en m

Umax: flèche maximale de la poutre, en m

  • Critère de flèche :

Les règlements de la construction imposent une valeur limite à cette flèche :

  • cas du bois lamellé collé : Umax ≤ L/250

 

On calcul le moment quadratique du lamellé collé:

Donc ici Umax =1.62*10-2* ((8570*10-6*31.664)/(10000*I))

=  1.62*10-2* ((8570*10-6*31.664)/(10000* ((b*h3)/12))

On calcul  pour la poutre L*C 230*2000

donc Umax  =  1.62*10-2* ((8570*10-6*31.664)/(10000* ((0.230*23)/12)) = 4 408 333m

 

 

 

 

 

  • La démarche de cette construction labellisée HQE

 

La démarche HQE vise à améliorer la qualité environnementale des bâtiments neufs et existants , c’est à dire à offrir des ouvrages sains et confortables dont les impacts sur l’environnement , évalué sur l’ensemble du cycle de vie ,sont les plus maitrisés possibles .C’est une démarche d’optimisation multcritère qui s’appuie sur une donnée fondamental :un bâtiment doit avant tout répondre à un usage et assurer un cadre de vie adéquat à ses utilisateurs .

 

Pour obtenir cette  labellisation HQE, la construction doit être la réalisation de  :

  • le respect d’une démarche d’éco-construction ;

 

  • l’optimisation de la gestion et de la maintenance technique des installations ;
  • le confort visuel.

Cibles éco-construction

« L’espace de 1 480m2 ouvre sur le jardin et offre une vue sur la ligne des Pyrénées Sur le solarium extérieur, les baigneurs sont à l’abri des regards depuis la chaussée.».

Pour des bâtiments avec leur environnements , Il y a une  parfaite intégration paysagère dans cette nouvelle construction. Ce centre aquatique est adossé aux courbes du terrain en une forme de coque . L’originalité réside dans le choix des matériaux, dont le grand bassin réalisé en inox, et le confort acoustique assuré par un mélange de panneaux en bois au plafond et de cellules végétalisées, tels des jardins suspendus, dans la paroi entre le bassin et les vestiaires.

Le versant environnement du centre aquatique est aussi dans ce qui ne se voit pas : la récupération des eaux pluviales, la production de 50 % de l’eau chaude sani- taire grâce à 70 m2 de panneaux solaires thermiques, une pompe à chaleur réversible de 275 kilowatts, et l’utilisation de la chaleur de l’eau de débordement pour le chauffage.

cellule végétalisée dans les parois

cellule végétalisée dans les parois

cellule végétalisée dans les parois

Matériaux renovelables

Il y a trois  matériaux recyclables utilisés dans la construction de la piscine, permettant de mettre en avant les 2 cibles d’éco-construction visées dans cet ouvrage .

Matériaux  : inox       Bois (epicea, sapin des Vosges) Cellule végétalisée
Localisation     Bassin charpente Paroi intérieure

 

 

la gestion de l’entretien et de la maintenance

Cette piscine est dotée d’un réseau informatique et d’un accès à internet permettant une gestion à distance de tout le système technique.

Cet environnement informatique permet de :

  • détecter et résoudre rapidement des problèmes de manière à répondre rapidement aux besoins de santé et de confort des usagers ;
  • • limiter au maximum les déplacements des techniciens et ainsi participer à la diminution d’émission de CO2.

 

 

 

  • Réseaux informatiques

 

On utilise la technologie ADSL (Asymmetric Digital Subscriber Line) sur le réseau local pour relier WAN ( width Area Network). En plus le routeur modem ADSL a la fonction de passerelle, donc l’organisation physique du réseau offre bien la possibilité d’une gestion à distance depuis internet.  LAN (Local Area Network) peuvent communiquer entre elles et avec le routeur parce que toutes les adresses sont de la forme 192.168.1.x/24. de plus si les machines disposent l’adresse de passerelle 192.168.1.1 alors elles peuvent communiquer avec internet et ainsi avec la gestion à distance.  

le serveur GTB local récupère les différentes informations que les automates lui envoient toutes les minutes et le serveur local envoie les ordonées au serveur distant .

4

Structure du réseau informatique

 

  • Réseau hydraulique

 

Dans ce bâtiment, il y a un bassin de nage que couvre une surface de 510 m², c’est un nage thermostaté avec la température entre 28 et 30°C. Normalement, après que quelqu’un nage, il y a des cheveux ou des déchet inutiles flottants dans l’eau. C’est le signe d’un défaut du système de traite des eaux. L’eau du bassin de nage est filtrée par un traitement chimique.

Pendant tout le circulation, y a 4 fonctionnement: filtrage, lavage, rinçage, vidange.

Filtrage:

L’eau du bassin de nage suit le cheminement suivant:

-recueillir par les goulottes positionnées sur la périphérie du bassin représente 70% du débit d’eau filtré

-collecter par des grilles de fond constitue le complément (30% du débit)

-première fois filtre dans un pré-filtre

-ajouter le floculant pour coaguler les impuretés

-deuxième fois filtre par 2 filtres à sable fonctionnant simulatnément

-chauffer

-réinjecter dans le bassin de nage

Dans le traitement de l’eau du bassin de nage, il y a deux pompes montées en parallèle pour réalisé la circulation. Chaque pompe assurent 50% du débit.

 

Lavage:

Le lavage des filtres à sable est obtenu par circulation inversée d’eau à travers le filre. Le lavage des filtres à sable a deux pompes pour accroître la vitesse de circulation de l’eau dans le filtre.

Quand la pression en amont des filtre dépasse la valeur fixée, la alarme technique est générée, c’est le signe que le filtre est encrassé et pour protéger le lavage des filtres.

 

Rinçage:

Avant de l’eau repasser, il vais évacue le résidus dans la bâche tampon des contre-lavanges.

 

Vidange:

Il vais en utilisant les pompes de recyclage à diriger l’eau vidangée vers la bâche tampon des contre-lavanges.

5

Phase de filtrage des eaux du bassin

Groupe 7: Solène Dumas-Grollier , Sijia Li, Minting Shen, Yixuan He

Pont Jacques Chaban Delmas

Nous sommes un groupe de quatre élèves et allons vous présenter le pont que nous avons étudié durant quelques heures. Nous essaierons de répondre aux questions suivante :

Quelles sont les solutions innovantes retenues par le constructeur pour obtenir les performances souhaitées ? Ces solutions vous paraissent-elles correspondre à un bon compromis en terme de développement durable ?

Sommaire :

I. Présentation

Situation géographique :

Le pont Jacques-Chaban-Delmas, se situe à Bordeaux, c’est un pont levant franchissant la Garonne entre le pont de pierre et le pont d’Aquitaine, il se situe dans le prolongement de la rue Lucien-Faure et relie le quai de Bacalan au quai de Brazza, au nord de La Bastide, d’où son nom initial de pont Bacalan-Bastide. 

Période de construction :

Les travaux se sont déroulés d’octobre 2009 à fin décembre 2012. L’ouvrage a été mis en service et ouvert à la circulation le lundi 18 mars 2013, deux jours après son inauguration.

Description du pont :

Le pont présente une longueur totale de 575 mètres avec 433 mètres de pont principal et 117 mètres de travée levante permettant de préserver les trafics maritime, fluvial et événementiel.

Les pylônes du pont, protégés d’éventuels chocs par des îlots de béton en amont et en aval6, présentent une hauteur de 77 mètres. Ils permettront un tirant d’air similaire à celui du pont d’Aquitaine en position haute, soit 55 mètres au-dessus du lit de la Garonne, et à celui du pont de Pierre en position basse, soit 13 mètres7. La distance entre les pylônes est de 110 mètres.

La largeur du pont varie de 32 à 45 mètres suivant les différentes sections. La largeur utile est de27 mètres avec 15 mètres utilisés par le transport en commun en site propre, les piétons et les deux-roues et 12 mètres pour les véhicules légers et les poids lourds. Les pistes cyclables et piétonnes sont séparées de la circulation des véhicules à moteurs. Ainsi cette circulation douce s’effectue à l’extérieur des pylônes du pont.

p1

p2

p3

p4

p5

Les lumières

Les lumières ne sont pas là pour éclairer mais pour souligner les lignes de l’ouvrage. La lumière des pylônes est due à la présence de milliers de lampes DEL. Les pylônes changent de couleur en fonction de la marée. Lorsque la marée est haute, on voit du bleu outremer et quand elle est basse, du vert Véronèse. Les DEL scintillent pendant les fêtes. Yann Kersalé, le responsable de cet éclairage, de celui de l’opéra de Lyon et du cours Victor-Hugo a été interpellé par l’UNESCO pour s’occuper de l’éclairage du pont Jacques-Chaban-Delmas.

p6

II. Structure porteuse du pont

III. Chaîne d’énergie parties mobiles

lolom