Le stade Pierre Mauroy est situé à Villeneuve-d’Ascq, commune de la métropole européenne de Lille. Il a été inauguré en août 2012. Il était, pour la société Eiffage, un vrai enjeu technologique. Ce sont les architectes Valode & Pistre et Pierre Ferret qui se sont occupé du développement de ce stade.
Ce stade combine à la fois stade, avec une pelouse, et à la fois une Aréna et un palais des sports. Le stade est notamment prévu pour accueillir des matchs de l’Euro 2016. La pelouse mobile permettant au stade de se transformer en Aréna de cette manière est unique au monde. De plus, le stade possède également un toit amovible. La combinaison de ces deux éléments technologiques au sein d’un même stade est une première.
La durée des travaux a été de 2 ans et demi. Le coût est de 282 millions d’euros pour ce qui concerne le stade et ses parkings. L’investissement global était 324 millions d’euros.
Le stade a été tout d’abord créé afin que le LOSC, le club de football de Lille, possède un stade homologué afin de pouvoir participer à la Champions League. De plus, la création de ce stade a favorisé la sélection de la France comme pays organisateur de l’Euro 2016.
Vous pouvez découvrir le stade et son environnement grâce à la vidéo ci-dessous.
En quoi les solutions innovantes retenues par le constructeur pour obtenir les performances souhaitées correspondent-elle à un bon compromis en termes de développement durable ?
La principale innovation technologique, le toit
Le toit du stade est une innovation technologique complexe car il est mobile. Le toit repose principalement sur deux méga-poutres qui traversent le stade en long. Ces méga-poutres mesurent 205 mètres de long et 16 mètres de haut.
Ces méga poutres en acier sont équipés de câbles de précontrainte qui vont créer des efforts internes afin de réduire la hauteur de ces poutres et d’en limiter la flèche quand le toit est fermé. Chacune des deux poutres pèsent 1800 tonnes. Les poutres supportent donc la toiture du stade, la charpente métallique et les quatre plateaux mobiles du toit ce qui fait un total de 7400 tonnes.
Pour hisser le tout à 31 mètres de haut, il a fallu attendre le bon moment car le vent ne devait pas dépasser 10m/s. Il s’agissait d’un travail de précision.
Le grand stade est muni d’une toiture gigantesque qui se situe de 31 m de haut et possède 4 éléments principaux : 2 structures hautes et 2 structures basses.
Comme nous pouvons voir dans cette section du stade, les quatre éléments se positionnent selon une configuration « gigogne » lorsque le toit est fermé. Ces deux structures hautes ont un poids chacune de 340 t, et deux autres structures basses se pèsent de 280 t chacune et chacun se mesure de 80 m sur 35. La toiture est composée de ce qu’on appelle « demi-toiture » ou « système de toit rétractable » qui est utilisé aujourd’hui non seulement au stade de Pierre Mauroy, mais aussi à l’University of Phoenix stadium. Il y a une autre couverture rajoutée de 30 cm pesant 600 t, qui a une fonction d’étanchéité, d’isolation thermique et de l’insonorisation, à la fois d’anti-réverbération à l’intérieure.
Il faut environ un quart d’heure pour que cette immense toiture puisse s’ouvrir, une structure de semi-portique assure l’ouverture et la fermeture du toit.
La structure de semi-portique appartient à ce qu’on appelle pont roulant, ce système possède au moins une poutre horizontale se déplaçant le long de chemins de roulement, les chemins de roulement peuvent être situés en hauteur ou au niveau du sol.
Dans notre étude de cas, les demi-toitures sont posées sur les mégapoutres qui prennent en charge de soutenir une masse totale de 7400 tonnes et les rails jouent un rôle de guidage pour ces demi-toitures.
Nous pouvons simplifier cette toiture rétractable en un système de pont roulant de grande taille, qui est constitué d’un quadrilatère qui est muni de sommiers équipés de galets assurant le déplaçant sur l’une et l’autre des voies de roulement. Des dispositifs anti-déraillement ou anti-envol peuvent être ajoutés. Ces derniers peuvent prévenir un déraillement, notamment du toit en cas de séisme.
En comparant avec Minute Maid Park, un stade de base-ball américain qui possède aussi un toit mobile, on peut donc calculer la résistance au roulement entre les galets et le rail du roulement afin de prouver la raison pour laquelle le stade de Pierre-Mauroy a choisi ce système du pont roulant en utilisant les galets :
Masse totale du toit (Le cas de Minute Maid Park) :3810 tonnes
Nombre de galets : 140
g(Accélération gravitationnelle) : 10Nm·s-2.
CRR (Coefficient de résistance au roulement) :0,003
Cf(Coefficient de frottement)=0,25
Fp(Poids)
FR(Résistance de roulement)
On estime que le poids repart sur tous les galets par parts égales et que le matériel n’est pas déformé, nous avons alors :
Fp=m.g=3810.103. 10=38,1 MN
FR = Fp. CRR =38100000.0,003=114,3 KN
FR(chaque roue)=FR/140=816N
Nous comparons avec la force de frottement sur le rail :
Ff=Fp.Cf=38100000.0,25=9,52MN
D’après le calcul théorique, nous voyons que l’emploi d’un système de pont roulant avec les galets et le rail réduit efficacement le frottement entre le guidage et le rail. Cela est donc une solution pertinente pour le stade de Pierre-Mauroy d’ouvrir / de fermer le toit.
EXPÉRIMENTATION
Pourquoi des méga poutres en treillis et pas de simples poutres en I ou de simples poutres planes ? Nous pourrons tester sur des poutres imprimés grâce à l’imprimante 3D l’influence des forces appliqués sur celles-ci. En essayant d’adapter les forces à appliquer en fonction des vraies forces exercées sur les poutres dans le stade, à notre échelle.
Cette observation nous permettrait de voir pourquoi dans le stade, la structure de la méga poutre est en treillis, et quelles seraient les principales déformations de ces différentes poutres. Nous aimerions également quantifier les différentes flèches, expérimentalement, et voir aussi les répartitions des forces au sein des structures.
Expérimentation 1 :
Nous avons un peu modifié notre expérimentation de départ :
– Nous allons uniquement étudier les poutres avec un profil en I (IPN)
Sur celle-ci, nous allons voir l’influence du blocage de la poutre (encastrement ou non) pour un effort donné en un point, au centre de la poutre.
Nous allons procéder comme ceci :
Nous allons fixer la poutre entre deux supports, ce qui va la bloquer.
Ensuite nous allons accrocher au centre de la poutre une masse de 900g afin d’avoir une déformation due à cet effort. Au début, nous voulions accrocher une masse de 500g à la poutre, mais la déformation étant trop faible, nous avons augmenté la masse.
Nous voulons mesurer la différence de hauteur, à un certain point de la poutre, avant et après l’ajout de la masse afin d’obtenir la flèche. Nous allons répéter cette expérience en bloquant sur une plus ou moins grande distance les extrémités de la poutre.
Exemple :
Calcul théorique :
Nous trouvons théoriquement une flèche de 17mm pour un effort due à une masse de 900g placé au centre d’une poutre bi-appuyé.
Résultats expérimentaux :
Lorsque la poutre est encastrée sur 0 cm, cela signifie qu’elle est juste appuyée sur les supports. Nous avons alors trouvé expérimentalement une flèche de 16,5mm alors que nous avions trouvé une flèche de 17mm par le calcul !
Conclusion :
Lors de l’expérience, nous avons remarqué que la flèche de la poutre était de moins en moins importante, plus on bloquait sur une grande distance les extrémités de cette dernière. Cependant, si l’ont fait ça sur une poutre d’un bâtiment, on réduit l’espace habitable, même si l’on diminue la déformation lors de la flexion. Dans le cas de notre stade, le choix a été fait de laisser en appui la poutre ce qui engendre une flèche plus importante, mais qui semble cependant négligeable. Le fait qu’elle ne soit pas encastrée permet de n’avoir aucune restriction au niveau de l’espace habitable qui serait ici l’espace comportant les gradins. De plus, cela permet d’éviter de rajouter une structure supplémentaire à monter pour encastrer la poutre.
Expérimentation 2 :
Nous avons voulu, dans cette expérimentation, voir l’importance des structures en treillis dans les structures porteuses.
Conclusion :
En ce qui concerne notre stade, le choix a été de faire une poutre ayant une structure en treillis. Celle-ci permet d’éviter les déformations au sein de la poutre et en plus, la structure en carré est gardée. Elle est représentée par les méga poteaux qui supportent la méga poutre, il y a un angle de 90° entre une méga poutre et un méga poteau. Les triangles à l’intérieur de la poutre permettent également de mieux répartir les efforts subits par cette dernière.
LA PELOUSE ESCAMOTABLE
Tout d’abord, nous allons vous présenter cette pelouse par le biais d’une vidéo ci-dessous. Elle présente l’installation du court de tennis dans l’enciente du stade lors de la finale de la Coupe Davis 2014.
L’escamotage s’effectue en trois partie :
-
Le levage grâce à des vérins disposés sous la pelouse 1h15 (fig.1)
- La reprise de charge durant laquelle on positionne les 24 bras articulés sur les chariots qui vont actionner la translation 20min (fig.2)
- La translation : ce sont les chariots et les vérins « push-pull » qui constitueront le dispositif de translation du plateau par « pas de pèlerin ». Chaque chariot supporte 250t en cas de défaillances. La translation s’effectue grâce à des pas de 90cm. Les vérins sont alimentés par deux groupes hydrauliques. Le contrôle de l’avancé est effectué par un système à roues codeuses 1h30 (fig.3)
Pour que la pelouse sud qui peut rester couverte plusieurs jours ne s’abime pas de son confinement, des rampes d’éclairage horticole et des ventilateurs sont installés en dessous du plateau mobile.
Système à roues codeuses: La roue codeuse est un capteur de position angulaire (et un capteur de vitesse angulaire lorsqu’il est associé à une mesure de temps). Le codeur rotatif est un capteur de position angulaire. Il mesure donc une grandeur d’angle. Pour connaitre la vitesse angulaire, il suffit de chronométrer le temps mis pour parcourir cet angle.