Analyse fonctionnelle d’un drone pour thermographie aérienne (1ère S2, groupe 3, equipe 1)

Lors de cette étude de cas nous avons choisi le thème des drones:
Nous allons étudié les avantages, les inconvénients et les solutions techniques pour prendre des photos aériennes avec un drone.

Le drone est un Aéronef dépourvu de pilote. Il se commande à distance, à vue, ou au moyen d’une caméra embarquée. Plus stable que les hélicoptères, plus maniable que les avions, grâce à ses multiples hélices, il se distingue pour le vol stationnaire et donc pour les prises de vues aériennes photos et vidéos. En revanche, il possède un faible autonomie ce qui limite très rapidement son utilisation, et sa petite envergure fais du drone un objet très sensible au vent. En effet, si le vent excède une vitesse de 40 km/h alors le drone vire en fonction de la direction du vent. Outre les domaines militaires et professionnels ( surveillance des zones inondées,des lignes haute tension, des manifestations , thermographie aérienne), Le drone est un objet dont le prix est plutôt élevé mais de plus en plus de particuliers en font l’acquisition.
Voici et un tableau citant plusieurs avantages et inconvénients du drone par rapport aux autres véhicules volants comme l’avion, l’hélicoptère ou l’ULM:

DRONE AUTRE VÉHICULE VOLANT
maniabilité a environ 30 cm de marge maniabilité a plusieurs
Vol stationnaire possible Vol stationnaire seulement pour l’hélicoptère
peut voler partout et proche des maison sauf au dessus des foules hauteur minimum de vol : 150m
Nous avons besoin au maximum du permis théorique ULM Besoin du permis avion ou hélicoptère
très sensible au vent ( supérieur a 40km/h ) sensible seulement au très fort vent
Très peu d’autonomie Très grande autonomie
Prix pas très élevé pour un professionnel Prix vraiment très élevé

 

Photo du drone utilisé au LP2I

Photo du drone utilisé au LP2I. Un quadricoptère parrot A.R drone Source: LP2I

Le drone a été conçu comme un objet maniable, léger et stable auquel on peut fixer un appareil de prise de vues et dont on peut manier facilement ce dernier.

Les solutions techniques:
Afin de déplacer le drone les ingénieurs on du mettre en place une télécommande infrarouge qui permet de déplacer le drone et d’effectuer des prise de vus a plusieurs mètres de hauteur. Ce système fonctionne grâce a une télécommande qui envoie les informations sous forme d’infrarouge que le drone reçoit et exécute grâce a un récepteur infrarouge.
Le drone possèdent un moteur électrique qui est donc non polluant et non bruyant. il est fabriqué a partir de tôle en alliage d’aluminium de 3mm d’épaisseur, avec du plastique et du polystyrène.

La pratique:
Le drone du Lycée ( un quadricoptère A.R drone Parrot®) possède un point d’accès wi-fi, étant donné que chaque élève du lycée dispose d’une tablette, nous avons pus diriger le drone via wi-fi a partir de nos tablettes.

Matthieu B. faisant voler le drone du lycée

Matthieu B. faisant voler le drone du lycée Source: LP2I

L’image d’une thermographie réalisé grâce à un drone Source: http://www.flyingeye.fr/case/thermographie-de-batiments-par-drone/

Un drone octocoptère thermographique. source: http://www.studiofly.fr/

Nous cherchons à décrire le ou les besoins auquel répond le système choisi.

Description d’une solution technique:
La nacelle gyrostabilité est la solution technique retenu afin de répondre à la fonction technique « orienter l’appareil de prise de vue et le stabiliser en fonction des mouvements du multicoptère ». Cette nacelle doit s’adapter aux dimensions de l’hélicoptère, être suffisament légère pour le multicoptère et se fixer à celui-ci. Elle permet de maintenir la caméra horizontale lors du roulis et du tangage de l’appareil rendant l’image plus stable.

Exemple de solution technique réduisant l’impact environnementale :
Le drone a adapté plusieurs batteries électriques afin de répondre à l’impact environnemental qui est quasi négligeables grâce cette solution technique. Ainsi, le drone pollue beaucoup moins au niveau énergétique et au niveau sonore qu’un moteur thermique.

Le drone a trois axes de rotations source http://aerololo.free.fr/

Le drone peut s’élever dans le ciel puis redescendre pour atterrir, enfin le drone une fois élever dans le ciel, peut se déplacer vers l’avant, l’arrière, la gauche ou la droite. Ces mouvements sont possible car le drone est capable de gérer individuellement la vitesse de rotations de ses hélices afin de lui permettre ces différents mouvements.
Les différents flux d’informations sont:
Le flux d’information de la camera de du drone a un espaces de stockage
Le flux d’information allant de l’appareil contrôlant le drone (Tablette/Smartphone/Télécommande) au recepteur du drone.
Du récepteur du drone au moteur du drone
Le flux d’information allant du moteur au différentes hélices afin de contrôler la rotation de chaque hélices pour pouvoir contrôler la direction du drone
Les différents flux mécanique:
– Le flux du moteur au hélices.

Les différents matériaux utiliser :
Les différentes types de matériaux utiliser sont du plastique sous différentes forme. L’utilisation du plastique s ‘explique grâce a a son poids nettement inférieur au poids du metal. Cependant le drone est consolider par du polystyrène car c’est un matériaux léger et absorbeur de choc, le plastique étant un matériaux plus fragile. La batterie dans le drone ne peut être dans en plastique car une batterie ne peut etre en plastique.
Comme amélioration techniques on pourrait très bien proposer:
Le drone pourrait être autonome et il pourrait nous suivre en autonomie.
Le drone pourrait être télécommandable par des lunettes pour donner une ascension de vol
Il pourrait avoir une fonction de transport. Le drone pourrait nous transporter.

Elie B. Augustin L.S. Melvin A.

Analyse fonctionnelle thermographie aérienne ballon captif 1S3 grp 2 équipe 3

L’analyse fonctionnelle du ballon captif

Comment, à l’aide des besoins exprimés par les utilisateurs, les ingénieurs ont pu concevoir ce système ?

xcvbn

Ballon Captif. Source : ( sujet de Bac )

I. Analyse du besoin

Le ballon captif a été conçu pour la thermographie aérienne, notamment pour effectuer des cartographies thermiques de bâtiments pour trouver les fuites thermiques et par la suite, proposer une isolation adaptée. Il doit aussi être discret pour ne pas déranger les touristes. Le ballon a beaucoup de points positifs par rapport aux autres dispositifs de thermographie aérienne (hélicoptère, ULM, drone) :

a) Tableau comparatif des moyen de prise aérienne

Type

Consommation

Niveau sonore

Hauteur de prise de vue

Émission de CO2

Type de mesures

Hélicoptère léger (2/3 places)

pétrole

70 dB à 500 m

Mini 400 m

Oui

Toitures sur grande zone

Hélicoptère mono-turbine (5/6 places)

pétrole

70 dB à 500 m

Mini 400 m

Oui

Toitures sur grande zone

Avion de tourisme

pétrole

70 dB à 500 m

Mini 400 m

Oui

Toitures sur grande zone

ULM

pétrole

35 dB

à 500 m

Mini 400 m

Oui

Toitures sur grande zone

Drone

électricité

?

?

Non

?

Ballon captif

Électricité (treuil)

0 dB

à 30 m

Maxi 150 m

Non

Toitures, façades et sites difficiles d’accès

-niveau sonore faible

-prix de l’heure de vol peu coûteux

-aucune émission de CO2

Son seul point négatif par rapport autres dispositifs; il a une hauteur de prise de vue de maximum 150m contre 400m pour les autres.

Afin de pouvoir être commercialisé, le ballon doit répondre à certaines contraintes, dont « être utilisable sous certaines conditions météo » ou encore « respecter les normes environnementales ».

diagramme pieuvre d'un ballon captif à thermographie aérienne

Diagramme pieuvre d’un ballon captif à thermographie aérienne. Source : ( sujet de bac )

II. Analyse du système

a) La fonction de service

La fonction de service a pour but d’effectuer des relevés de thermographie infrarouge, elle comprend 4 fonctions techniques : – permettre au dispositif de s’élever pour des prises de vue en altitude. – pouvoir transporter et piloter la caméra infrarouge. – visualiser la prise de vue en étant au sol et connaître sa position géographique. – savoir où est situer le dispositif à l’aide d’un GPS.

b) Solution technique

La solution technique pour engendrer une force ascensionnelle est l’utilisation d’un ballon rempli d’hélium avec des tailles différentes selon le poids des dispositifs (caméra, nacelle…). L’utilisation de l’Hélium pour le déplacement en altitude permet de n’avoir aucune consommation de carburant (seulement d’électricité pour le treuil) et de ne générer aucun bruit.

croquis des différents types de ballon captif existant

Croquis des différents type de ballon captif existant. Source : (lp2i)

 Le premier mouvement du système consiste à élever le ballon en altitude de façon à le contrôler avec le treuil. Et ensuite, plus complexe, le mouvement de rotation de la caméra (nacelle), 360° dans les 2 sens.

diagramme flux d'informations

Diagramme flux d’informations et d’énergies. Source : (lp2i) : erreurs à corriger

c) Réponse aux besoin et matériaux utilisés

Les matériaux utilisés sont : un câble qui d’après les contraintes doit être en acier car il faut qu’il résiste à la force de traction exercée par le treuil et le ballon. Il faut aussi un treuil pour enrouler et dérouler le câble de fixation du ballon. Pour prendre en photo, il faut une caméra avec un masse minimum ( à cause de la nacelle ) et une grande autonomie. Si on devait améliorer le système, il faudrait ajouter une fonction de déplacement : télécommander le treuil pour permettre au ballon de se déplacer au sol.

Réponse au besoin. Source : (sujet de bac )

III Sources

http://eduscol.education.fr

Sujet du Bac Si 2013

Axel R; Lucas B; Mickaël M et Chris C

Efficacité énergétique et impact environnemental – Télévision LCD – Consommation et pertes énergétiques

Pour cette étude de cas sur la télévision à écran plat, nous disposions d’une télévision LCD Samsung 32 pouces modèle LE32S81B. C’est sur cet appareil qu’on été effectuées toutes les mesures et toutes les études qui suivent.

I) Consommation énergétique

1) Consommation et variation de consommation

Sur ce modèle, le constructeur a intégré un système de réglage de l’intensité du rétro-éclairage, ainsi que plusieurs modes d’économie d’énergie, afin de faire varier la consommation énergétique en fonction du confort voulu

Pour connaître la puissance électrique consommée, nous avons procédé à plusieurs mesures, à chacun des mode “éco” proposés par l’appareil et pour deux niveau de rétro-éclairage (6 et 10, le réglage pouvant aller de 0 à 10). Nous avons également pris les mesures au niveau de rétro-éclairage 0 pour les deux options extrêmes du mode éco. Voici les résultats obtenus :

Source : LP2I

Source : LP2I

Ainsi, nous pouvons voir que le réglage du rétro-éclairage et du mode Éco peut grandement faire varier la puissance consommée par la télévision : la consommation avec les paramètres maximum (rétro-éclairage : 10 ; éco : arrêt) est environ 2,4 fois supérieure à la consommation avec les paramètres minimum (rétro-éclairage : 0 : éco : élevé)

Il est à noter que l’image affichée à l’écran a un impact négligeable sur la puissance consommée. En affichant une image blanche puis une image noire à l’écran avec des réglages identiques, nous avons pu constater que la différence de consommation s’élevait à 0,3 W, c’est-à-dire une différence négligeable.

2) Mode éco

Au cours de notre étude, nous avons cherché à savoir sur quel paramètre agissait le mode éco proposé par le constructeur afin de réduire la consommation de la télévision.

Nous avons donc émis une hypothèse :
Le mode éco ne serait en fait rien de plus qu’un autre paramètre réglant le rétro-éclairage.

Afin de la vérifier, nous avons comparé (subjectivement, à défaut d’appareil de mesure) la différence de luminosité entre deux réglages différents de rétro-éclairage et de mode éco consommant à peu près la même puissance
Notre choix s’est porté sur les réglages 6 ; élevé et 0 ; arrêt, qui présentent, malgré la différence de rétro-éclairage importante, une différence de consommation de tout juste 2,2 W.

A la comparaison, il s’est avéré que les deux réglages proposent le même niveau de luminosité.

En conclusion, nous pouvons donc dire que le mode éco est simplement un autre paramètre qui influe sur le rétro-éclairage de la télévision.

3) Indice d’Efficacité Énergétique (IEF)

En prenant pour base la puissance consommée par la télévision avec des réglages moyens (rétro-éclairage = 6 et éco : moyen), nous avons aussi calculé l’IEF de l’appareil, soit le rapport entre la puissance mesurée (P) et une puissance de référence (Pref), permettant de déterminer la classe énergétique de l’appareil.

Pref = Pbase + A * 4,3224Watts/dm² = 20 + 28,73*4,3224 = 144,182552 W

Avec Pbase = constante en fonction de l’équipement intégré et A = suface de l’écran en dm²

IEF = P / Pbase = 71,8 / 144,182552 = 0,497979811038

Cet indice classe donc notre appareil dans la classe énergétique C lors d’un fonctionnement dans les conditions de test.

II) Pertes énergétiques

Au cours de cet étude, nous avons aussi cherché à savoir où l’appareil pouvait générer des pertes énergétiques. Pour ce faire, nous avons analysé les composants de la télévision.

Avec cette analyse, nous avons pu dresser la liste suivante :

Cette télévision LCD génère des pertes :
– au niveau du rétro-éclairage. Celui-ci est assuré par des tubes CCFL, qui n’ont qu’un rendement énergétique de 20%. Le reste de l’énergie est perdu en chaleur.
– au niveau de la carte d’alimentation. La présence d’un dissipateur thermique nous indique une importante production d’énergie thermique inutile au système et qui est dissipée et donc perdue.
– On constate également des pertes au niveau de l’écran LCD, bien qu’elles soient minimes par rapport aux deux sources de pertes précédentes.

Ampli audio

Nous avons étudié un amplificateur de puissance couplé à une enceinte.
Nous l’avons câblé selon le schéma ci dessous
image

L’ampli que nous avons étudié était câble sur une plaque de test et n’était pas sous la forme d’un produit que l’on’ trouve dans un magasin de Hi-Fi.
image

Nous avons tous d’abords mesuré le courant consommé sur le générateur lui même.
Toutes les mesures ont été effectuées a une fréquence de 90Hz car si on change la fréquence la consommation de courant n’est plus la même. On remarque environ 0.01 A pour 10Hz.
Quand nous étions avec le potentiomètre de l’ampli à 0, le générateur affichait 0,01A pour 12V donc 0,12W.

On utilise une tension en entrée de Ueff = 300mV.
Pour une alimentation à 2,16W, on a une sortie à 1,59V et 0,17A.
On a donc Ps= 0,27W soit un rendement de 0,27/2,16 = 0.125 donc 12,5%.
Pour une alimentation à 0.84W, Ps= 0,0385W soit un rendement de 4,5%
Ce rendement est moyen pour un amplificateur de classe A dont le rendement maximum est de 25% mais médiocre comparé à un ampli de classe D dont le rendement moyen est de 90%.
Sur notre système, l’étude des matériau n’a porté que sur le dissipateur car le reste du système n’était que des composants électronique.
Il était fabriqué avec de l’aluminium, matériau dont l’impact environnemental est très important.
Ce système a un rendement médiocre et est constitué de matériau a fort impact environnemental ce qui en fait un système peu compétitif sur le plan énergétique et environnemental.

[Contrôleur à batterie]Tableau de variation de tension et risques pour l’utilisateur

Après avoir vu le chronogramme caractéristique du système voici le tableau récapitulatif de celui-ci :

Voltage du variateur de tension (en Volt) Valeur du “N” indiquée par le système Tension indiquée par le système (en mV) Low Bat couleur LED
5 255 5000 Oui Rouge
10 520 10000 Oui Rouge
10.8 550 10800 Variation entre oui et non (donc le seuil de Low Bat) Variation rouge ou verte (du au seuil)
15 770 15000 Non Verte

Concernant les risques, le contrôleur de batterie n’est juste qu’une une carte électronique. Elle est donc très fragile et sensible au chocs il faudrait donc remédier à cela en y ajoutant une coque ( plastique au autre matière solide non métallique ) pour la protégée des chocs et de l’utilisateur. L’autre risque est au niveau du branchement comme l’a très bien expliquer Sylvain dans son article : Les risques du contrôleur de batterie.
Vous pouvez aussi voir d’autres mesures avec l’article de Guillaume : Mesures du Contrôleur de batterie avec piles.

Bras manipulateur SCHRADER BELLOWS : mesures et graph de liaison

Mesures sur le mouvement de translation horizontal : sortir ou rentrer le bras

Source : LP2I

Conclusion sur le comportement du système : L’action de rentrer ou sortir le bras met 750 ms (soit 0.75 s) à s’effectuer après que l’utilisateur ait alimenter le vérin correspondant.

Mesures sur le mouvement de fermeture de la pince

Source : LP2I

Conclusion sur le comportement du système : La fermeture de la pince met 50 ms (soit 0.05 s) à s’effectuer après que l’utilisateur ait alimenter l’unité correspondante.

 

Schéma simplifié du bras manipulateur présentant les différents sous-ensembles cinématiques :

Source : LP2I

Graph de liaisons :

Source : LP2I